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ABSTRACT: Irradiation of human skin with ultraviolet B (280–320 nm) initiates the photochemical
conversion of 7-dehydrocholesterol via previtamin D3 to vitamin D3. Vitamin D3 needs for its activa-
tion two hydroxylation steps in the liver and kidney. The final product, hormonally active 1a,25-
dihydroxyvitamin D3 (calcitriol), arrives via the circulation to its target tissues and acts in a genomic or
nongenomic manner. It has been found that human skin irradiated with ultraviolet B also is able to
produce calcitriol in substantial amounts. This cutaneous vitamin D3 pathway is unique and, most
likely, of considerable relevance for healthy and diseased skin. It is well known that topical application
of calcitriol and its analogs can improve hyperproliferative skin diseases. Some studies have convinc-
ingly demonstrated that calcitriol and other vitamin D analogs may also be used for the treatment of
immunological, inflammatory, and infectious skin diseases. More recently, it has been found that
calcitriol or vitamin D analogs have photoprotective effects and can reduce UV-induced deoxyribo-
nucleic acid damage.
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Basics of the cutaneous vitamin
D3 pathway

The major source of vitamin D3 for most humans is
the skin exposed to sunlight or artificial sources of
ultraviolet B (UVB) radiation (280–320 nm), which,
under usual circumstances, contributes to more
than 90% to the serum concentration of vitamin D,
the latter being a reflection of cutaneous vitamin
D3 synthesis, dietary intake of vitamin D3 and
vitamin D2, and, if taken, vitamin D supplement. A
photochemical reaction with maximum spectral
effectiveness at about 297 nm results in formation
of previtamin D3 from 7-dehydrocholesterol (pro-
vitamin D3, 7-DHC) in basal and suprabasal layers
of the skin (FIG. 1) (1,2).

The effectiveness of UVB on formation of
previtamin D3 in the skin is influenced by several
UVB-absorbing molecules, i.e., chromophores, in

the skin, such as melanin, deoxyribonucleic acid
(DNA), ribonucleic acid, proteins, and 7-DHC.
7-DHC absorbs UV radiation between 290 nm and
315 nm, causing it to isomerize, resulting in a bond
cleavage between carbons 9 and 10 to form the
9,10-seco-sterol previtamin D3. It is reasonable to
assume that the action spectrum for previtamin D3
production in organic solvents and in the skin of
rats, chickens, and humans spans wavelengths of
between 260 nm and 315 nm (3). Approximately
65% of human cutaneous 7-DHC per unit area is
found in the epidermis; the remaining 35% is in the
dermis. Determination of the subcellular localiza-
tion of 7-DHC revealed that most 7-DHC (80%)
were in the membrane fraction of epidermal tissue
(20% in cytosolic fraction).

Dependent on temperature and time, previta-
min D3 undergoes, then, nonenzymatic isomeriza-
tion to form vitamin D3 (cholecalcioferol, calciol).
In contrast to 7-DHC, which is a 5,7-diene, vitamin
D3 is a 5,7,19-triene with three conjugated double
bonds typical for vitamin D molecules. Experimen-
tal evidence indicates that about 50% of the previ-
tamin D3 can isomerize to vitamin D3 within 2.5
hours in the skin. This fact explains the rapid rise in
serum levels of vitamin D3 after exposure to UVB
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radiation. Within 12–24 hours after UVB exposure,
the circulating concentrations of vitamin D3 are at
their maximum levels. If previtamin D3 is formed
in the skin, it can also undergo either photoisomer-
ization to lumisterol, tachysterol, and toxisterols,
or is retransformed to 7-DHC. It has been observed
that during the first 10 minutes of simulated equa-
torial solar radiation, about 10–15% of the epider-
mal 7-DHC in white skin was converted to
previtamin D3 without any detectable amounts of
lumisterol or tachysterol (4). Another study found
that no more than 5% of the 7-DHC in human skin
was converted to previtamin D3 (2).

The effects of sun exposure are paradoxical; they
include erythema (reddening of the skin after sun
exposure) and DNA damage, on one side, and
vitamin D3 synthesis, on the other side. The action
spectra for previtamin D3 formation, erythema,
and formation of cyclobutane pyrimidine dimers
from DNA all peak in the UVB range (5). FIG. 2
indicates the similarity of the action spectra for
vitamin D3 production and erythema.

Hence, photosynthesis of vitamin D3 cannot be
dissociated from acute and chronic photodamage,
including photocarcinogenesis (5). In fair-skinned
individuals, maximum possible vitamin D3 synthe-
sis occurs within a few minutes of summer sun
exposure. Maximum vitamin D3 synthesis in all
individuals is generated at suberythemogenic UV
doses, and longer exposures add nothing to
vitamin D stores despite increasing DNA damage

in a linear fashion. FIG. 2 shows the wavelength
dependency of UV for the development of
erythema, with the UVB (280–320 nm) wave-
lengths causing the strongest response. However,
there is an impact on erythema due also to the UVA
(320–400 nm) wavelengths. To date, the most cited
vitamin D3 action spectrum is that of MacLaughlin
et al. (2), which was obtained by irradiating neona-
tal foreskin with UV. As shown in FIG. 2, vitamin
D3 synthesis is strictly confined to the UVB region
and cannot occur in the UVA region (>320 nm). It
should be noted, however, that there is at least a
statistical likelihood of previtamin D3 formation at
UVA wavelengths. In sunlight and using the defini-
tion of the CIE (International Commission on
Illumination) of UVB (280–315 nm) (7), any UVA
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FIG. 1. Photobiology of vitamin D3 in human skin. UVB, ultraviolet B; DBP, vitamin D-binding protein.

FIG. 2. Action spectra for vitamin D3 production and
erythema (6,7).
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production of previtamin D3 is of the order of 3–4%
of the total production. If one takes the looser defi-
nition of UVB favored by dermatologists (280–
320 nm), then there is only <1% previtamin D3
formation at UVA wavelengths (3).

Limiting factors of the cutaneous
vitamin D3 synthesis

Major sources of vitamin D for most humans are
casual exposure of the skin to solar UVB (280–
320 nm) radiation and from dietary intake. The
effectiveness of cutaneous synthesis of vitamin D3
is determined by several factors (8): (i) the content
of 7-DHC in the skin; (ii) the cutaneous concentra-
tion of 7-DHC is mainly regulated by the activity of
the 7-DHC-D7-reductase, which catalyzes the con-
version of 7-DHC to cholesterol and vice versa
(FIG. 1) (9); (iii) the energy of photons that depends
on the wavelength of the UVB radiation (8); (iv)
both the solar zenith angle (which is a function of
latitude and season) and time of day (10); (v) skin
pigmentation (11) and use of sunscreens (12,13),
which considerably suppress photolysis of 7-DHC;
(vi) temperature, which regulates the conversion of
previtamin D3 to vitamin D3; (vii) exposure doses
of UVB because maximal vitamin D synthesis
occurs following suberythemogenic UVB exposure,
hence higher doses would cause conversion of pre-
vitamin D3 to inactive isomers, such as lumisterol,
tachysterol, toxisterols, and 7-DHC (4), and of
vitamin D3 to suprasterols and 5,6-trans-vitamin
D3 (14,15); and (vii) age, because there is an inverse
relation between the concentration of 7-DHC in
the epidermis with age (16).

Vitamin D metabolism

The two forms of vitamin D (D3 and D2) are bio-
logically inactive; they require activation in the
liver and kidney. After binding to carrier proteins,
in particular, vitamin D-binding protein (DBP),
vitamin D is transported to the liver where it is
enzymatically hydroxylated to 25-hydroxyvitamin
D [calcidiol, 25(OH)D]. Hydroxylation is catalyzed
by a microsomal cytochrome P450 enzyme CYP2R1
and/or the mitochondrial cytochrome P450
CYP27A1; neither is subject to tight regulation.
Recently, it has been found that several other cyto-
chrome P450 mixed function oxidases (CYP2C11,
CYP3A4, CYP2D25, and CYP2J3) exhibit vitamin D
25-hydroxylase activities (17,18). 25(OH)D quickly
enters the circulation, where it has a half-life of
about 15 days (19). The normal circulating levels of

25(OH)D in the blood are between 25 nmol/L–
200 nmol/L. Numerous studies have demonstrated
the positive correlation between whole body expo-
sure to solar (or solar-simulated) radiation and rise
of circulating 25(OH)D3. It has been shown, for
example, that irradiation with a suntanning lamp
(MedSun, Wolff Systems Technology, Atlanta, USA)
three times a week for 7 weeks (cumulative irradi-
ance: four minimal erythema dose [MED]) resulted
in a 50% increase of 25(OH)D3 after 1 week that
continued to increase for 5 weeks before reaching a
plateau at about 150% above baseline values (20).
Currently, serum levels of about 30 ng/mL
(75 nmol/L) are considered by many investigators
as optimal for health.

25-Hydroxyvitamin D, bound to DBP, is then
transported to the kidneys and is finally hydroxy-
lated by CYP27B1 (25-hydroxyvitamin D-1a-
hydroxylase; 1aOHase) at C1a position to
hormonally active 1a,25-dihydroxyvitamin D. The
1a-hydroxylation of 25(OH)D to calcitriol is tightly
regulated by the parathormone; other regulators
are calcium, phosphate, calcitonin, fibroblast
growth factor 23, and 1a,25(OH)2D3 itself. Cal-
citriol has biologic effects in the kidneys but is also
transported by DBP to other vitamin D receptor
(VDR)-positive target tissues (mainly bone, intes-
tine, and parathyroid gland) to act in a genomic or
nongenomic manner (FIG. 2). Regulation of gene
expression by calcitriol is mediated by VDR and
takes place within hours. By contrast, nongenomic
responses of calcitriol are probably mediated by a
specific membrane-bound VDR and occur within
seconds to minutes. Nongenomic effect of cal-
citriol include rapid changes in phosphoinositide
metabolism, increases in intracellular calcium
levels, stimulation of intestinal calcium transport
and phosphate fluxes, elevation in cyclic gua-
nosine monophosphate (cGMP) levels, and activa-
tion of protein kinase C. The serum levels of
calcitriol range from 75 pmol/L to 200 pmol/L;
calcitriol has a serum half-life of 10–24 hours
(21).

Extrarenal synthesis of calcitriol

There is substantial evidence for additional extra-
renal sites of calcitriol synthesis (FIG. 3).

In vitro, many nonrenal tissues, including bone,
placenta, prostate, keratinocytes, macrophages,
T-lymphocytes, dendritic cells, and several cancer
cells (e.g., those from lung, prostate, and skin) can
enzymatically convert 25(OH)D to 1a,25(OH)2D
(22–25). Several cell types, including epidermal
keratinocytes, macrophages, prostate epithelial
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cells, and osteoblasts, express both 25-hydroxylase
and 1a-hydroxylase activity, which enables them
to metabolize vitamin D3 to 1a,25(OH)2D3 (24,26–
29). It has been discovered that human kerati-
nocytes exhibit an autonomous vitamin D3
pathway not only in vitro (30–32), but also in vivo
(33) (FIG. 4). However, it should be noted that
cutaneous metabolism of circulating 25(OH)D to
1a,25(OH)2D is thought not to play a significant
role in vivo because the amount of free 25(OH)D,
which has to penetrate the cell membrane of epi-
dermal keratinocytes, is too small to induce for-
mation of sufficient amounts of 1a,25(OH)2D. In
particular, 25(OH)D3 is very tightly bound to DBP
(Kd = 5 ¥ 10-8 M) in the serum (34). Because of this
tight binding and the high plasma concentration of
DBP (0.3–0.5 mg/mL), virtually all 25(OH)D3 mol-
ecules in the circulation are present in a complex
with DBP, and only approximately 0.03% (equiva-
lent to 12.4 � 4.5 pmol/L) of this metabolite is
found in free form (35). Moreover, the epidermis is
not vascularized, which further limits the passage
of 25(OH)D from blood to epidermal keratinocytes.
Keratinocytes also possess vitamin D catabolic
pathways. A five-step inactivation pathway from
calcitriol to calcitroic acid in epidermal kerati-
nocytes is attributed to the multifunctional
25-hydroxyvitamin D3-24-hydroxylase (CYP24A1),
which is transcriptionally induced by the action of
calcitriol in a very sensitive manner (36). The
physiological importance of a second catabolic

pathway, which results in the conversion of
1a,25(OH)2D3 to the A-ring diastomer 1a,25(OH)
2D-3epi-D3, is less clear (37).

In vitro investigations have shown that
dermal fibroblasts express one of the potential
25-hydroxylases (CYP27A1), but not the 1a-
hydroxylase (CYP27B1) (FIG. 4). Therefore, fibro-
blasts might play an important role in supplying
calcitriol precursors [vitamin D3 and 25(OH)D3]
for keratinocytes and, possibly, for the serum (38).

In recent studies with an in vitro system of
reconstituted cytochrome P450 side-chain cleav-
age system (P450scc), 7-DHC and vitamin D3
were found to serve as alternative substrates for
P450scc (39). It has been demonstrated that
P450scc located in mitochondria from skin cells
and other tissues can transform 7-DHC to
7-dehydropregnenolone (7-DHP) (40). 7-DHP
may serve as a substrate for further conversions
into hydroxy derivatives through steroidogenic
enzymes. In the skin, 5,7-steroidal dienes (7-DHP
and its hydroxy derivatives) may undergo UVB-
induced isomerization to vitamin D3-like deriva-
tives. This novel pathway can generate a variety
of compounds depending on local steroidogenic
activity and exposure to UVB. The physiological
importance of this pathway remains, however, to
be clarified. In addition, photosynthesized vitamin
D3 can also be sequentially hydroxylated in the
epidermis by a monooxygenase encoded by
CYP11A1 to 20,22-dihydroxyvitamin D3 and other,
as yet uncharacterized, trihydroxylated vitamin D3
metabolites (39,40).

Cutaneous production of calcitriol may exert
autocrine effects on keratinocytes as well as para-
crine effects on neighboring cells. This hormone
may regulate growth, differentiation, apoptosis,
and other biological processes. Skin cells (kerati-
nocytes, fibroblasts, and other cells) express VDR,
an absolute prerequisite for regulation of genomic
effects of calcitriol and other synthetic vitamin D
analogs. There is a multitude of genes in primary
human keratinocytes and squamous carcinoma
cell lines regulated by calcitriol and its low calce-
mic analogs (41–43). Notable among these genes
are those responsible for regulation of cell growth,
differentiation, inflammation, and other processes.
Regulation of genes associated with growth and
differentiation of keratinocytes argues, in particu-
lar, for a link of therapeutic effect of UVB radiation
in the treatment of psoriasis with the cutaneous
vitamin D3 pathway.

Interestingly, Su et al. (44) have previously dem-
onstrated that free concentrations of calcitriol as
low as 10-12 M increased involucrin and trans-
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glutaminase messenger ribonucleic acid levels in
keratinocytes in vitro. This sensitive effect of cal-
citriol might primarily contribute to increased dif-
ferentiation of keratinocytes in vitro and in vivo. It
should also be mentioned that selected transcrip-
tional activity of VDR may occur in keratinocytes
irrespective of the presence of the 1a,25(OH)2D3
ligand (45). It has been shown that VDR has the
ability to activate the 24-hydroxylase (CYP24A1)
promoter independently from the presence of
1a,25(OH)2D3 in primary keratinocytes (45).
Therefore, a more detailed elucidation of the path-
ways leading to 1a,25(OH)2D3-independent VDR
transcription would be of uttermost interest.

Genomic effects of calcitriol

Upon binding to calcitriol, the VDR is phosphory-
lated and recruits one of the three 9-cis-retinoid X
receptors. Regulation of gene expression is then
dependent on the ability of these heterodimers to
build co-regulatory protein complexes including
the steroid receptor coactivators and the VDR
interacting protein. These complexes bind to spe-
cific genomic sequences in the promoter region
named vitamin D response elements. The VDR not
only directly upregulates gene transcription (e.g.,
CYP24A1 and genes encoding for cathelicidin) but
also directly downregulates the transcription of
several genes such as those encoding parathyroid
hormone (PTH) or parathyroid hormone-related
peptides (PTHrP).

Nongenomic effects of calcitriol

In addition to its genomic effects, calcitriol, like
other hormones, mediates these effects through

rapid nongenomic actions. Calcitriol activates a
variety of signal transduction systems including
Ca2+ influx; release of Ca2+ from intracellular stores;
modulation of adenylate cyclase, phospholipase C,
and protein kinases C and D; as well as mitogen-
activated protein (MAP) and rapidly growing fibro-
sarcoma (Raf) kinase pathways. These activities
have been found in many cells, including kerati-
nocytes, enterocytes (intestinal absorptive cells),
muscle cells, osteoblasts, and chondrocytes. VDR
seems to be necessary for some of these nonge-
nomic transduction processes; however, another
protein named 1a,25-dihydroxy-membrane asso-
ciated rapid response steroid binding (MARRS) is
also seemingly involved in these rapid nongenomic
actions.

Exogeneous sources of vitamin D

Vitamin D comprises two closely related sub-
stances of nutritional importance: vitamin D3
(cholecalciferol) and vitamin D2 (ergocalciferol).
Vitamin D3 is formed from its precursor 7-DHC,
which is found in ample amounts in the skin of
humans and animals. Vitamin D2 is formed by UV
radiation from its precursor ergosterol, which is
present in plants, yeast, and fungi. However, plants
are a poor source of vitamin D2. The two forms of
vitamin D only differ by the side chain to the sterol
skeleton. In 1950, the World Health Organization
(WHO) stated that 1 IU of vitamin D should be
equivalent to 25 ng crystalline vitamin D3, and no
distinction was made between vitamin D3 and
vitamin D2 (46). Of note, orally administered
vitamin D3 increases the serum vitamin D status
more efficiently (by a factor of 1.7) than vitamin D2
when given in equimolar amounts over 14 days to
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healthy volunteers (47). Some studies have shown
that vitamin D2 supplementation can suppress
endogenously formed 25(OH)D3 and also
1a,25(OH)2D3 (48–50). Therefore, the assumption
that vitamins D2 and D3 have equal nutritional
value is probably incorrect and should be reconsid-
ered (51). In fact, in recent years, there has been a
trend of replacing vitamin D2 with vitamin D3 as
the form added to food or given as supplements.
Therefore, care should be taken to specify the type
of vitamin D used for nutritional studies (47,51).

Dietary sources of vitamin D

Only a few foods naturally contain appreciable
amounts of vitamin D3 that have an impact on
dietary intake: fish liver, fish liver oils, fatty fish,
and egg yolks. Oily fish such as salmon, mackerel,
and bluefish are excellent sources of vitamin D3.
Interestingly, investigations have shown that
farmed salmon, the most widely consumed fish in
the United States, contained about one quarter of
the vitamin D3 found in wild-caught salmon from
Alaska (52). Some farmed salmon even had vitamin
D2 as verified by liquid chromatography coupled
with tandem mass spectrometry. Altogether, there
is the necessity of reevaluation of the vitamin D
content in all fish and other foods that have been
traditionally recommended as good sources of
naturally occurring vitamin D (52).

Some countries practice fortification of certain
foods with vitamin D, most often milk, margarine,
and/or butter. The mean intakes of vitamin D in
different studies vary with age group, food and
supplementation habits, and gender.

Vitamin D supplements

Numerous vitamin D supplements in different
dosages are widely and inexpensively available in
most countries.

Recommendations for vitamin
D intake

WHO

Most countries have their own recommendations
for vitamin D intake, recognizing that there may be
insufficient sun exposure in larger or smaller
groups of the population. The WHO published a
report on diet, nutrition, and the prevention of
chronic diseases in 2003 (53). The osteoporosis
section suggested that in countries with a high
fracture incidence, low calcium intake (<400–
500 mg/day) was associated with increased risk in

older individuals. It was suggested that an increase
in dietary intake of vitamin D and calcium in this
group could reduce fracture risk. Currently, the
WHO guidelines indicate that if sunshine exposure
was limited, a vitamin D intake of 5–10 mg (200–
400 IU) daily was recommended (53).

Europe

Most European countries have their own recom-
mendations for vitamin D intake (54). A sufficient
vitamin D intake is recommended in most coun-
tries “from the cradle to the grave.” Because
vitamin D is a fat-soluble vitamin, term infants
are born with a store of vitamin D reflecting the
mother’s vitamin D status. These stores provide
the infant with sufficient vitamin D for 4–6 weeks.
The vitamin D content of mothers’ milk (ª25 IU –
equivalent to 625 ng vitamin D per liter of milk)
from women living in industrialized countries is
not considered to be sufficient to maintain
adequate vitamin D status in the child.

Thus, many countries recommend 10 mg vitamin
D per day (400 IU/day) to infants from 4 weeks
onwards. The same amount is recommended for
pregnant and lactating women. The current recom-
mended daily intake of vitamin D in most European
countries is 5 mg/day (200 IU/day) for adults and
10 mg /day (400 IU/day) for those older than 60–65
years. Several European countries often have more
detailed recommendations than the general ones,
and the recommended values vary somewhat. The
Population Reference Intake recommended by the
European Community Scientific Committee for
Food (SCF) (55) for daily vitamin D intake are as
follows: 6–11 months, 10–25 mg; 1–3 years, 10 mg;
4–10 years, 0–10 mg; 11–17 years, 0–15 mg; 18–64
years, 0–10 mg; over 65 years, 10 mg; pregnancy,
10 mg; and during lactation, 10 mg.

However, safety is always an important factor
when formulating recommendations for nutrient
intake. According to the Food and Nutrition Board
(FNB) and using similar methodology, the Euro-
pean Commission SCF also identified a vitamin
D3 upper (intake) limit of 50 mg per day (2000 IU/
day). The SCF selected 100 mg from the results of
the clinical trial of Vieth et al. (56) as the no
observed adverse effect level (NOAEL) and
selected an uncertainty factor of 2 to calculate the
50-mg UL. Tolerable ULs for vitamin D were set in
2002 by the SCF for special groups of the popula-
tion (newborns, infants, children, adolescents,
adults, as well as pregnant and lactating women)
(Table 1).
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Unfortunately, the SCF has neglected to define
the biochemical form of vitamin D, which is
selected for application. It is not clear whether the
SCF means vitamin D3 or vitamin D2. It should be
noted that a 50,000-IU dosage of vitamin D2 is con-
sidered to be equivalent, in terms of the conversion
rate to 25(OH)D, to no more than 15,000 IU of
vitamin D3 and perhaps closer to only 5000 IU. In
a study by Armas et al., single doses of vitamins
D2 and D3 led to equivalent increases in serum
25(OH)D levels in the initial 3 days. 25(OH)D con-
tinued to rise in the vitamin D3-treated individuals,
peaked at Day 14, and serum levels remained sus-
tained over 28 days. In contrast, the vitamin
D2-treated patients had a rapid decline in serum
levels after Day 3 to no change in baseline at Day 14
(57). In other words, the currently tolerable upper
intake level of 2000 IU/day for vitamin D3 should
not be applied to vitamin D2. However, it has
recently been reported that vitamin D2 is as effec-
tive as vitamin D3 in maintaining concentrations
of 25(OH)D (58).

The recommended daily intake of vitamin D in
Finland, Germany, and the Netherlands is 5–10 mg/
day (59–61), and 15 mg of vitamin D per day for
elderly subjects with insufficient vitamin D3 syn-
thesis in the Netherlands (61). In Germany, the
mean vitamin D intake is 3 mg/day in females and
4 mg/day in males (62). Other populations in
Europe (Austria, UK, Italy, and Ireland) have a
similar recommended vitamin D intake between
3 mg/day and 6 mg/day.

Public health policy in the UK related to nutri-
tion and bone health has been shaped by reports
from the Department of Health (DH), Food Stan-
dards Agency, and the WHO. Dietary Reference
Values for a number of nutrients were published in
1991 by the DH Committee on Medical Aspects of
Food and Nutrition Policy. The Dietary Reference
Values for vitamin D were based on the dietary
amount required to ensure that the serum level of
25(OH)D in winter was above 20 nmol/L (8 ng/
mL), as vitamin D deficiency as osteomalacia only
occurs in individuals with lower circulating con-

centrations. The subsequent DH report on nutri-
tion and bone health in 1998 not only concentrated
particularly on calcium and vitamin D but also
briefly addressed the effect of body weight, alcohol,
and other nutrients. However, no changes to the
Reference Nutrient Intake (RNI) were made. No
RNI was set for children above the age of 3 years or
adults below the age of 65 years, unless they were
considered at risk of vitamin D deficiency. Indi-
viduals whose exposed skin is covered on a regular
basis by clothing, those who are house bound, or
those having increased skin pigmentation are
among the at-risk populations considered when a
daily RNI of 10 mg (400 IU) was established. As the
mean intake of vitamin D from food sources in
adults in the UK ranges from 2.0 mg to 4.0 mg (80–
160 IU) daily, most individuals are at risk of devel-
oping vitamin D deficiency and will require
supplementation.

The Norwegian National Council on Nutrition
and Physical Activity has recommended daily con-
sumption of cod liver oil supplements, partly
because of the suspected vulnerability to vitamin D
deficiency in the Norwegian population in relation
to low intake in the diet and limited exposure to
sunshine, which is the main source of vitamin D3
(63). One dose of cod liver oil supplement (5 mL)
contains 500 mg vitamin A, 10 mg vitamin D, and
10 mg vitamin E, as well as 1,2 g n-3 fatty acids (64).
Norwegians have a high consumption of vitamin
D-rich fatty fish and usually consume cod liver oil
during their whole life span (65). This may explain
the relatively high levels of serum 25(OH)D in
elderly Norwegians during wintertime. Because of
varying recommendations in the various countries
in Europe, the European Union is supporting a
project toward a strategy for optimal vitamin D for-
tification named OPTIFORD (66).

North America (United States and Canada)

Current recommendations for the Dietary Refer-
ence Intake of Vitamin D in the United States by the
Institute of Medicine are 5 mg/day (200 IU/day) for
newborns, children, and adults aged between 1
month and 50 years; 10 mg/day (400 IU/day) for
adults aged between 51 years and 70 years; and
15 mg/day (600 IU/day) for individuals >70 years
(67). These guidelines are currently undergoing
review. The 2005 Dietary Guidelines for Americans,
published by the US DH and Human Services and
the US Department of Agriculture, recommend
that older adults and other at-risk populations
consume 25 mg (1000 IU) of vitamin D daily (68).
The American Academy of Dermatology has also

Table 1. Age-dependent tolerable upper intake
limit (UL) for vitamin D (mg/day)

Years UL

0–2 25 mg (1000 IU)
3–10 25 mg (1000 IU)
11–17 50 mg (2000 IU)
Adults over 50a 50 mg (2000 IU)

aThe UL for adults does also apply to pregnant and lactating
women.
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recommended that adults should take 1000 IU of
vitamin D3. The American Academy of Pediatrics
has recommended that infants, children, and ado-
lescents up to the age of 18 years should take
400 IU of vitamin D daily (69,70). A combination of
dietary intake and vitamin D supplementation may
be needed to achieve 1000 IU daily.

The US FNB also evaluated the potential for high
intakes of vitamin D to produce adverse effects and
set a safe tolerable upper intake level of 50 mg
(2000 IU) for vitamin D3. The FNB selected 60 mg
(2400 IU) as the NOAEL on the basis of evidence
obtained from the clinical trial of Narang et al. (71)
and selected an uncertainty factor of 1.2 to calcu-
late the 50-mg UL. Recent studies suggest that an
oral vitamin D intake up to 100 mg/day is safe in the
adult population (56).

In Canada, the Canadian Cancer Society has also
recommended a daily intake of 1000 IU of vitamin
D (72).

Australia/New Zealand

The current Australian guidelines for recom-
mended vitamin D intake for different age groups
are 200 IU/day from birth to 50 years of age,
400 IU/day for people aged 51–70 years, and
600 IU/day for those over 71 years (73).

Special groups

Pregnant and lactating women

Some studies have shown that vitamin D metabo-
lism is changed in pregnant but not in lactating
women. Pregnancy is characterized by an increase
in the maternal serum level of 1a,25(OH)2D3 (74)
because of a putative placental synthesis of this
hormone (75). However, the physiological role of
the elevated circulating 1a,25(OH)2D3 is not clear.
It seems, however, that changes in vitamin D
metabolism of pregnant woman do not have a big
influence on the maternal vitamin D requirement.
However, it is very clear that transfer of vitamin D
from mother to fetus is important for the neonate’s
growth rate and bone development, and probably
for other biological processes. In contrast, two
studies have failed to indicate any change in serum
levels of vitamin D metabolites during lactation
(76,77). Increased calcium requirements are
mainly regulated by the PTH-related peptide
(76,78). The vitamin D content of human milk is
relatively low and ranges from 25 IU/L to 40 IU/L
(0.6–1 mg/L) maximally (79). Because human milk

is a poor source of vitamin D, rickets are still found,
but these are almost exclusively in breast-fed
infants deprived of sunlight exposure (80,81).
There is little evidence that increasing calcium or
vitamin D supplementation to lactating mothers
results in an increased transfer of calcium or
vitamin D in milk (76). Therefore, it seems that
there is little purpose in recommending additional
vitamin D for lactating women. Vitamin D3 supple-
mentation (400 IU/day) of breast-fed infants, as
recommended by the American Academy of Pedi-
atrics, should be practiced (70).

Newborns

Infants have a relative high need of vitamin D
because of their high rate of skeletal growth. At
birth, infants have acquired in utero the vitamin D
reserves that must carry them through the first
months of the life. It has been found that 64%
of French neonates have serum levels below
30 nmol/L (<12 ng/mL), which corresponds/
complies to a severe vitamin D deficiency (82). As
stated previously, breast-fed infants are particu-
larly at risk because of the low concentrations of
vitamin D in human milk (79). Additionally, the
situation worsens by restriction in exposure to sun-
light for seasonal, latitudinal, cultural, or social
reasons. Infants born in the autumn months at
extreme latitudes are particularly at risk because
they spend the first months of life indoors and
therefore have scarce opportunity to synthesize
vitamin D3 in their skin during this period. Accord-
ingly, sporadic cases of rickets are still being
reported in many northern cities but are almost
always in infants fed with human milk (80–84). All
infant formulas sold in the United States actually
have at least 400 IU/L of vitamin D (85). Thus, if
an infant is ingesting at least 500 mL per day of
formula (vitamin D concentration: 400 IU/L), he or
she will receive a vitamin D intake of 200 IU per
day.

Elderly people

Several studies have demonstrated an age-related
decline in many metabolic steps of the vitamin D
pathway (86), including the rate of synthesis in the
skin, the rate of hydroxylation, and the response of
target tissues (e.g., bone) (87). In contrast, a recent
study (88) has concluded that intestinal absorption
of vitamin D is not decreasing with age, as earlier
thought (50). Vitamin D deficiency is then charac-
terized by low serum levels of 25(OH)D coupled
with elevations in plasma PTH and alkaline phos-
phatase (89).
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Meta-analysis of randomized clinical trials for
hip and nonvertebral fractures showed that
vitamin D intake of 700–800 IU/day, but not
400 IU/day, was associated with protection against
these fractures (90). In another study, it was found
that improving calcium and vitamin D nutritional
status substantially reduces all cancer risks in post-
menopausal women (91). Other groups have found
contradictory results: Calcium plus vitamin D did
not prevent fractures or colorectal cancer in post-
menopausal women, although it should be noted
that only 400 IU/day of vitamin D3 supplement
were given to the participants (92,93).
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