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Skin color has changed during human evolution. These changes may result from adaptations to solar
ultraviolet radiation (protection of sweat glands, sunburn, skin cancer, vitamin D deficiency, defence
against microorganisms, etc.), and/or sexual selection. Migration to areas with high levels of UV is asso-
ciated with skin darkening, while migration to areas with low levels has led to skin lightening. However,
other factors may have played roles. Temperature and food have probably been secondary determinants:
heat exchange with the environment is dependent on ambient temperature, and a high intake of food rich
in vitamin D allows a dark skin color to persist even at latitudes of low UV levels, as exemplified by Inuit’s
living at high latitudes. Future studies of human migration will show if skin lightening is a faster process
and has a higher evolutionary impact than skin darkening. Maybe due to that some American Indians
have kept a relatively light skin although they live under the equator.

The following hypotheses for skin darkening are reviewed: shielding of sweat glands and blood vessels
in the skin, protection against skin cancer and overproduction of vitamin D, camouflage, adaptation to
different ambient temperatures, defense against microorganisms, protection against folate photodestruc-
tion. Hypotheses for skin lightening are: sexual selection, adaptation to cold climates, enhancement of
vitamin D photoproduction, and changing food habits leading to lower intake of vitamin D. The genetical
processes behind some of the changes of skin color will be also briefly reviewed.

� 2009 Elsevier B.V. All rights reserved.
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Fig. 1. One possible model of the origin of our species (adapted from Ref. [16]).

Fig. 2. Genetic variation versus distance from East Africa [17].
1. Introduction

The ability to change skin color has been of crucial importance
for human evolution. Fluence rates of solar radiation and spatial
and temporal changes of the spectral composition of this radiation
are major determinants for this evolution, which has taken place in
periods when humans have migrated or changed diet. A number of
hypotheses have been proposed for skin color adaptations. These
will be briefly listed and discussed in the present review. Emphasis
will be put on photobiological and photobiophysical aspects.

2. The origin of humans and their earliest skin color

When the physical characteristics of the environment change,
the individuals who are best adapted to the new conditions have
a survival advantage. Over many generations, evolution by natural
selection will lead to changes in the genetic and phenotypic com-
position of the species. In fragmented environments, some mem-
bers of the species may adapt better to different environmental
circumstances than others. This may eventually lead to the forma-
tion of new species [1].

During the last 15–10 million years there has been a cooling of
the global climate, mostly expressed as a drying close to the equa-
tor [2]. Archeological and molecular evidences suggest that com-
mon ancestor of humans diverged about 6–7 million years ago in
Africa [3–5]. One of the oldest known hominids from that time
was found in Chad [3,6]. He may have walked upright [4,7]. The
African apes did probably change less than the human ancestors
[5]. They have, and probably had, light skin under their dark hair.
Skin in areas with little hair is light, but turns brown and gets
freckles in the sun [8]. Many researchers believe that 7 million
years ago the human ancestors resembled chimpanzees, as they
appear today, with respect to characteristic features of hair and
skin [8].

One of the oldest known human skeletons belongs to ‘‘Lucy”,
who lived in East Africa more than 3 millions years ago [9]. Later,
1.5 millions years ago, the ‘‘Turkana” boy lived in the same area
[9,10]. He had longer legs than ‘‘Lucy”. The hot sun of Africa may
have led to modifications of the skin of early humans in order to
avoid overheating of their brain [11]. The dense capillary network
in the brain assures that its temperature closely follows arterial
temperature and is controlled through systemic thermoregulation,
independent of head surface temperature [12]. The brain can func-
tion optimally only within a narrow range of physiological temper-
atures. To reduce the chance of overheating, early humans
probably lost most of their body hair and developed sweat glands
[13]. Furthermore, bacteria and fungi are easier to fight in a hair-
less skin [14]. However, this may not be correct since we still have
hair on our heads and on other vital body areas.

Before about 1.8 million years ago human evolution occurred
only in Africa. Afterwards, humans migrated out of Africa for the
first time and probably populated Asia first and Europe somewhat
later, inhabiting non-equatorial regions for the first time [15]. Fig. 1
is a sketch of one of the models for the later part of human evolu-
tion [16]. Fig. 2 demonstrates the relationship between mean ge-
netic diversity of human populations computed on the basis of
autosomal microsatellite markers and their geographic distances
in km from East Africa [17]. This figure shows genetic evidence
documenting much later migrations out of Africa, only about
50,000 years ago [17]. These migrations lead to the spread of mod-
ern humans (Homo sapiens) throughout the world, and, as they
spread, they largely replaced other human species, such as Nean-
derthals, whose ancestors had migrated from Africa 1.8 million
years ago. This is the migration which is relevant for understanding
the present-day patterns of skin color.

3. Hypotheses for skin darkening

At least six hypotheses have been proposed for skin darkening:
(1) protection of sweat glands and cutaneous blood vessels, (2)
protection against skin cancer, (3) protection against vitamin D
overproduction, (4) camouflage, (5) combating microorganisms,
and (6) protection of vital structures and molecules such as folates
in the blood.

3.1. Protection of sweat glands and cutaneous vasculature

The strong African sun can easily damage sweat glands and
blood vessels in a naked skin. Thus, thermoregulation will be im-
paired, and development of a dark, protective skin color may have
been inevitable [18]. Fig. 3 shows the characteristics of different
human skin types [19]. Before it gets burnt, dark skin tolerates sev-
eral times more solar radiation than light skin does [20,21]. The



Fig. 3. Different skin types (adapted from Ref. [19]). Human skin of all types have
the same total number of melanocytes, but the number, size, aggregation and
distribution of melanosomes within the keratinocytes vary. Melanosomes in
keratinocytes of dark skin are large, heavily pigmented and distributed individually,
whereas those in keratinocytes of Caucasian skin are smaller, have less melanin and
distributed in clusters. More melanosomes are in dark skin.
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melanin is produced by melanocytes in the basal layer of the epi-
dermis, from where it moves upwards as the basal cells divide
and migrate to the stratum corneum, and, thus, protects all layers
of the skin, as well as the blood vessels under it against sun dam-
age [21–23]. However, it is a paradox that dark skin absorbs more
solar radiation and gets warmer than light skin does [24].

3.2. Skin cancer protection

The hypothesis that the main purpose of a dark skin color is to
protect against skin cancer is rather unlikely, because skin cancer
usually develops late in human life, after the reproductive age
[25–27], which was low for early humans [28]. The incidence rate
of all types of skin cancer increases rapidly with age [25–27].

Furthermore, it is possible that older individuals may help to in-
crease the overall success of reproduction of their kin with their
knowledge or by providing for them. Individuals who remain alive
and escape skin cancer would be able to help their family. This
might lead to some selection for resistance against developing skin
cancer.

3.3. Protection against vitamin D overproduction

In 1967 Loomis proposed that a dark skin color had developed
to prevent against vitamin D intoxication [29]. Already at that time
it was known that solar radiation, notably at equatorial fluence
rates, was an extremely efficient vitamin D producer and that high
doses of vitamin D might have toxic effects [29]. This proposal is
wrong because once previtamin D3 is formed from 7-dehydrocho-
lesterol in the skin, it either can isomerize to vitamin D3 or absorb
UVB radiation and isomerize into biologically inactive products,
out of which lumisterol is the most abundant one [30]. For this rea-
son vitamin D intoxication from sun-exposure has never been ob-
served [31].

3.4. Camouflage

Camouflage plays a vital role for the survival of some animals,
and for this purpose melanin is used [32]. Melanin pigments can
get darker through a reversible, photochemical process or through
spatial rearrangements of melanin structures. In human skin such
rapid darkening is called immediate pigment darkening, IPD. It
takes place within minutes upon exposure to UVA and visible radi-
ation, reaches a maximum within 1–2 h and then fades [33–37].
IPD is most pronounced in individuals with a dark baseline (consti-
tutive) pigmentation [34]. No photoprotective effects of the IPD,
such as less skin cancers or sunburns, have been observed [36].
The evolutionary significance and the biological role of such dark-
ening for humans can at present only be speculated on [35–37].
The early humans would have had to rely on concealment during
hunting [38]. Maybe IPD acted as camouflage and led to decreased
visibility in the sun?

3.5. Defense against microorganisms

Melanin producing cells may have immunological functions,
and some scientists think that melanocytes should be regarded
as true members of the immune system [39]. Bacteria and fungi
are more abundant and troublesome in tropical regions than in
cold regions. This supports the defense hypothesis, since people
living in tropical regions usually have more melanin and a darker
skin color than people living in colder regions at high latitudes
[39]. Studies of populations living at low latitudes and high alti-
tudes with a cold climate, as in Tibet, may help to evaluate this
hypothesis.

3.6. Protection of folates in the blood

The so-called ‘‘folate-hypothesis” for darkening of skin was pro-
posed in 1978 by Branda and Eaton [40]. Folates are vitamin B
derivatives of utmost importance in DNA synthesis; i.e. in the bio-
synthesis of pyrimidines. Folate deficiency leads to infertility in
men and neural tube defects of babies and other disorders of evi-
dent evolutionary significance [41–46]. Since a substantial fraction
of the folates in humans are flowing in the blood, either in serum or
in red cells, and since folates absorb and can be degraded by UVB
radiation, and since blood is flowing in dermal microvessels that
can be reached by solar UVB, brown or dark skin may have been
developed to protect folates [8,40,47]. Some, but not all, in vivo
investigations aimed at elucidating this question, indicate that in-
tense solar radiation or artificial UVB radiation as used in the treat-
ment of psoriasis, can lead to folate degradation, similar to what is
found in test tubes [48,49]. Since folate antagonists, such as meth-
otrexate, are used in cancer therapy with the hope that they can
slow down tumor growth selectively [50], we have proposed that
the observed variation of internal cancer prognosis with season
of diagnosis can be related to folate photodegradation in the sum-
mer season [41]. Thus, prognosis is best when treatment starts in
summer or autumn [51–54]. However, we found no decrease of fo-
late levels in summer in Norway, and proposed that the prognosis
was more likely to be related to vitamin D levels, which are signif-
icantly larger in the summer season than in the winter season
[51,55].

More work, both measurements of penetration of UV and visible
light to dermal vessels of dark and light skin and studies of folate
photobiology are needed before the ‘‘folate hypothesis” can be fi-
nally evaluated.
4. Hypothesis of skin lightening

From the fact that skin lightening has occurred several times in
the evolutionary history of humans [8], we can conclude that this
process is an important factor in evolution. Four main hypotheses
for skin lightening will be reviewed: that of the hypothesis of sex-
ual selection, that of adaptation to colder climates through changes
of heat exchange with the environment, that of need of more effi-
cient vitamin D photosynthesis at high latitudes and that of genetic
drift.
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4.1. Sexual selection and sexual dimorphism in human skin color

In most populations women are slightly lighter than men, but
the evolutionary purpose of such difference is unknown [8,56–
58], few explanations have been proposed. One possible explana-
tion of sexual dimorphism in skin pigmentation may be that vita-
min D deficiency has larger negative evolutionary consequences
for women than for men, due to their greater need for calcium
and vitamin D during pregnancy and lactation [8,59].

Another possible explanation may be that men seem to prefer
women with a light skin color [60], which can be regarded as a sign
of youth and fertility [58,61]. Skin gets slightly darker upon ageing,
notably during puberty [56,62].

A third hypothesis is that women’s lighter skin can be regarded
as a form of infantile mimicry [61,63,64]. Because light skin char-
acterizes the early infant stage of primates, it may have become
a visual cue that triggers appropriate adult behaviour toward in-
fants, i.e., decreased aggressiveness and increased desire to provide
care and protection.

These hypotheses are not mutually exclusive. Once women had
acquired a visibly lighter skin, for whatever reason (greater need
for vitamin D, infantile mimicry, etc.), men would have used this
visual cue to identify women, particularly when searching for po-
tential mates. Mate search would therefore be biased toward the
lightest-skinned women. Although initially created by natural
selection, the sex difference in skin color may thus have been fur-
ther accentuated by sexual selection. This scenario is supported by
the absence of a single physiological cause. Women are lighter-
skinned not only because they have less melanin but also because
they have less blood in the outer layers of the skin [65,66]. Selec-
tion may have acted via paleness, rather than solely via vitamin
D production.

Both men and women seem to use skin color for sex identifica-
tion. Subjects can distinguish a man’s face from a woman’s face
even if both images are blurred and offer no other cue than skin
tone. A key detail seems to be the contrast between the pigmenta-
tion of the face and that of the lips and eyes [67–69]. This visual
cue may also influence sexual preferences. Women prefer darker
male faces more during the oestrogen-dominant phase of their
menstrual cycle than during the progesterone-dominant phase
[70].

Variations in human skin color have been correlated to natural
selection (latitude, UV radiation) and sexual selection (male mor-
tality rates, incidence of polygyny, female participation in food
gathering), and have been described in the literature [60,66,71].
Human skin color may sometimes correlate more with the inci-
dence of polygyny than with latitude [71]. The association between
very dark skin and low latitude exists mainly when polygynous
societies are found at low latitudes, such as in sub-Saharan Africa
[60,71]. Thus, just as weaker sexual selection may explain the
unusually dark skin of sub-Saharan agricultural peoples, stronger
sexual selection may explain the unusually light skin of northern
and eastern Europeans, as well as other highly visible color traits
[66,72].

In fact, already Darwin discussed the sexual selection hypothe-
sis [58,73]. This hypothesis posits that human skin color results
from an equilibrium between natural selection forced by solar
UV (sunburn, skin cancer, vitamin D deficiency, etc.) and sexual
selection by men for lighter skinned women [74].

4.2. Adaptation to colder climates

When humans migrated away from equatorial area they came
into colder climates. Did skin color play any role in this connec-
tion? It has been reported anecdotally from the Korean War and
from Alaska that dark people are more prone to get frostbites than
light people [75]. This was supposed to be caused by a higher emis-
sion of heat from dark than from light skin. According to one of the
laws of physics a high absorption coefficient (dark skin) is linked to
a high emissivity. Skin color would be important if human skin
emitted light or infrared radiation up to a wavelength of about
2 lm. For these wavelengths dark skin has a higher absorption
coefficient than light skin [76]. However, for a skin temperature
of 32 �C, Wien’s law of displacement says that the wavelength of
maximal emission (kmax) should be: kmax (lm) � 2900 (lm � K)/T
(K) � 9.5 lm. Around this wavelength dark and light skin have
similar absorption coefficients [77,78]. Thus, after being heated
to skin temperatures, a kettle painted white loses its heat as fast
a kettle painted black [79]. Even more than that, up to 2 lm dark
skin will absorb more radiation from the environment and, there-
fore, keep the heat better than light skin. As far as we know, light
and dark skin are similar with respect to vascularisation. Thus,
there is weak evidence for this hypothesis for skin lightening.

4.3. The vitamin D hypothesis for skin lightening

Neanderthals probably had a light skin [80], and were better
suited for a cold and challenging climate at the end of the last
ice age than the incoming Cro-Magnons, our ancestors [81]. Nean-
derthals had, on average, larger brain sizes than present-day hu-
mans but not than contemporaneous modern humans, such as
Cro-Magnons [10,82]. They had a larger ratio of body mass to body
surface, which would reduce heat loss [81]. In the 1800s Rudolf
Virchow introduced the possibility that Neanderthals might have
suffered from rickets. The hypothesis that they died out because
of vitamin D deficiency was supported by Ivanhoe in 1970s [83].
However, later several other fossils of Neanderthals have been ana-
lyzed and it has been concluded that they seem to be relatively
healthy [84]. However, evidences from stable isotope ratios sug-
gest limited intake of fish, but not of animal meat [85–87]. In con-
trast to fat fish, meat of animals contain almost no vitamin D [88].
The reasons why the Neanderthals disappeared remain a mystery.
The Cro-Magnon people who replaced the Neanderthals were mi-
grants from further south. This suggests that they would, at least
initially, have had darker skin than the Neanderthals. This should
have limited their vitamin D production from UVB relative to that
of the Neanderthals. However, their diet was probably different
from that of Neanderthals. Salmon bones, paintings of Salmon,
trout, and pike in Cro-Magnon caves, indicate that fish was eaten
[89,90]. Fatty fish, such as salmon and trout, are rich in vitamin
D [91]. Fishing nets, fish hooks, rafts and canoes were invented
by Cro-Magnon. This suggests that fish was regularly eaten.

A parallel observation with the disappearance of the Neander-
thals, is that the Nordic people disappeared from West Greenland
in a cold period (1350–1450), and their bones are also said to bear
signs of vitamin D deficiency [92–94].

If we assume that vitamin D does not play any role in the devel-
opment of human skin color, neither white nor dark people in the
world would suffer from vitamin D deficiency. In contrast to this, a
lot of people are vitamin D deficient, especially African Americans
(even in southern Arizona) [95], aboriginal people in Canada [96],
Greenlanders in Denmark [97], immigrants from Pakistan, Turkey
and Somalia in Norway [98], etc. Dark skin needs about six times
more UVB than light skin to generate a given amount of vitamin
D [99,100]. In our opinion the vitamin D hypothesis is the most
likely hypothesis, although, still there is no consensus about it.

4.4. Genetic drift

Another hypothesis for skin lightening is that genes that influ-
ence variation in skin and hair pigmentation are only under strong
selection close to the equator, so selection is relaxed in human
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populations living at higher latitudes [21,101,102]. Consequently,
just by chance, there were changes in the allele frequencies of
genes underlying skin pigmentation that happened to produce
lighter skin in some populations. This hypothesis would predict
the existence of some groups with light skin away from the equa-
tor but also some groups who maintain a dark skin (more variation
in skin color).
Fig. 4. Evolutionary-genetic model of human skin pigmentation (adapted from
Refs. [21,114]).

Fig. 5. The growth of human populations reveals population surges (adapted from
Refs. [145,146]).
5. The genetics of skin color

The genes controlling human skin color act mainly on melanin
production and distribution [102,103]. Many genes are involved,
some of them being recently discovered [101–109]. For the origi-
nal, dark skin color, a functional melanocortin 1 receptor, MC1R,
seems to be essential [110]. Africans generally have the wild type
of the gene coding for MC1R [105]. When melanocortin binds to
MC1R on melanocytes, it stimulates the production of two forms
of melanin, eumelanin and pheomelanin, and determines the bal-
ance between them [101,104,105]. The MCIR gene has a wide
range of alleles in non-tropical populations, particularly among
Europeans, but these alleles mainly affect hair color. Only red hair
is associated with a visible reduction in skin pigmentation [104].
Thus, most of Japanese and Inuits have the Arg163Gln variant of
the gene, while red haired people have a number of other variants,
such as Arg151Cys and Arg160Trp [101]. The ASIP gene may play a
shared role in shaping light and dark pigmentation across the
world [104]. A number of genes seem to be involved in the devel-
opment of light skin (Fig. 4): MYO5A, DTNBP1, TYRP1, SLC24A5 and
KITLG in Europeans [107,111–113], DCT, KITLG, EGFR, DRD2 in
Asians [102,113]. SLC24A5 accounts for 25–38% of the difference
between African and European skin color [112]. Genetic results
support the hypothesis that skin pigmentation has not evolved
neutrally in human species, but rather that populations ‘‘out of
Africa” have undergone positive selection for skin pigmentation
(for a review, see Ref. [114]). The allelic changes at the AIM1
(SLC45A2) gene are dated to around 11,000 BP among European
populations [115]. Some alleles causing light skin are shared across
Europe and East Asia, and some are specific to either Europe or East
Asia [102,104,106,111,114,116,117]. So the two evolutionary tra-
jectories are not entirely independent, but not entirely shared
either.
6. The introduction of agriculture and its relation to vitamin D
and the Indo-European language

Agriculture was developed from 12,000 to 10,000 years ago
[118], and led to a large expansion of the population: a given area
of land can feed several times more people through agriculture
than through gathering, hunting and fishing (Fig. 5). Keeping
domestic animals improved the situation further, since it gave eas-
ier access to meat and made milk an alternative, nourishing food
[28]. When the population expanded, it rapidly spread in many
directions. The wave of people brought with them, not only agri-
culture and the habit of milk drinking and development of lactose
tolerance [28], but also the Indo-European languages [119,120].
About five thousand years ago the wave of agriculture came to
the Baltics, to Scandinavia and to England [119]. In England
changes of the isotope ratio of 12C–13C have been found in bones
from between 5500 and 5200 years before now. This shows that
the food changed rapidly away from fish as an important food
source [121]. Due to the Gulf Stream current northern Europe
can sustain growth of barley and similar grains. All this together
led to a rapid development of the lactose tolerance gene
[28,122,123], and to light skin. The agricultural food was an insuf-
ficient source of vitamin D, and the fluence rate of UVB in the solar
radiation was too low to produce enough vitamin D in dark skin.
Development of agriculture has occurred in several places, and
did not necessarily lead to skin lightening if the ambient UVB level
was sufficiently high to allow adequate vitamin D synthesis. Cold
climates and high latitudes would speed up the need for skin
lightening.

It is possible that agriculture played a role in the evolution of
light skin in modern humans, but the main objection to this
hypothesis is its recency: A few thousands of years may not be en-
ough for such genetic changes.

7. Health effects of vitamin D

A large number of health effects of an adequate level of vitamin
D are now being revealed [124–134]. Many of them are of evolu-
tionary relevance, and we will briefly list the most important ones:
The incidence rates and the severity of coronary heart disease are
reduced, the rates of diabetes, multiple sclerosis, rheumatoid
arthritis, Crohn’s disease, and several other immune deficiency-re-
lated diseases, such as defense against influenza, are reduced
[124,126,131,134–138]. Furthermore, the incidence rates of most
internal cancers are reduced, while their prognoses are improved,
by a good vitamin D status [127–129,133,139–143]. Rickets and
osteomalacia are practically abolished [125]. Finally, the risk of
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getting children with schizophrenia is significantly reduced
[130,132].

Yupiks and Inuits (Eskimo), who live far north, have a darker
skin than Europeans. Some of them live inland, but may have a his-
tory of coastal habitation. Their original diet was traditionally rich
in fish which contains a high level of vitamin D. It is believed that
their diet compensated for the low fluence rates of vitamin D pro-
ducing UVB radiation, and, therefore, there was no need for skin
lightening in Eskimos. However, modern Inuits living on a west-
ernized low vitamin D diet instead of tradition diet (rich vitamin
D diet) suffer from vitamin D deficiency [97].
8. Skin lightening and skin darkening

Does development of light skin from dark skin and dark skin
from light skin occur at similar rates? The fact that South American
Indians, living in equatorial regions have a much lighter skin color
than Africans living at the same latitude may offer a road towards
an answer. The South American Indians came from high latitudes
about 15,000 years ago [144]. During this time no extreme skin
darkening has occurred. As discussed above, light skin was devel-
oped around 11,000 years ago [115]. Does this show that skin
lightening is a faster and, from the evolution point of view, a more
important process than skin darkening? Does it show that avoid-
ance of vitamin D deficiency is more important than avoidance of
skin cancer?
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