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Abstract Effective utilisation of limited resources is a
challenge for health care providers. Accurate and rele-
vant information extracted from the length of stay dis-
tributions is useful for management purposes. Patient
care episodes can be reconstructed from the compre-
hensive health registers, and in this paper we develop a
Bayesian approach to analyse the length of care episode
after a fractured hip. We model the large scale data
with a flexible nonparametric multilayer perceptron
network and with a parametric Weibull mixture model.
To assess the performances of the models, we estimate
expected utilities using predictive density as a utility
measure. Since the model parameters cannot be di-
rectly compared, we focus on observables, and estimate
the relevances of patient explanatory variables in pre-
dicting the length of stay. To demonstrate how the use
of the nonparametric flexible model is advantageous for
this complex health care data, we also study joint effects
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of variables in predictions, and visualise nonlinearities
and interactions found in the data.
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1 Introduction

Accurate and relevant information concerning the per-
formance of health system is essential for health care
management as it helps to maximise the positive im-
pact of health system on the health of both individual
patients and communities, at a cost that is accept-
able to those who must directly or indirectly finance
health services [1, 2]. Recently, the idea of improving
performance by identifying good treatment practices
has become very popular [3]. However, this has been
challenging in practice because of the lack of adequate
data and appropriate methodology [4, 5].

Concrete quantitative measurement of performance
has mainly been conducted using various performance
indicators [6, 7]. Length of stay (LOS) has been char-
acterized as an easily available indicator of hospital
activity [8]. As an indicator length of stay is difficult
to manipulate, and directly comparable across institu-
tions, but as a concept it is a multifaceted one that
reflects organizational patterns of care as well as the
severity of patients. For an individual patient too short
LOS may lead to immediate adverse outcomes, but also
too long LOS may be harmful due to reduced ability
to cope at home after discharge, especially among the
elderly. At the service provider level, a long LOS typ-
ically indicates more complex patients, but may also
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be a reflection of non-optimal operational efficiency.
In practice, LOS has been considered as a relatively
simple proxy for resource consumption, and it is an
important measure for evaluation of the success of
shifting care from costly inpatient care toward less
expensive outpatient treatment [9]. In order to provide
information that helps to more effectively plan the use
of limited resources, it is fundamental to model length
of stay accurately.

A skewed distribution is common for the length of
stay data [9]. Due to the skewness, parametric models
with long tails are typically applied for describing length
of stay. For example, possible models for patient length
of stay are Gamma, Weibull and Lognormal distribu-
tions [8], Coxian phase-type models [10], or mixtures of
parametric distributions [11]. In cases when there are
covariates available, the model parameters can be set
to depend linearly on covariates. For instance, Faddy
and McClean [12] showed how to introduce covariates
through log-linear functions in a phase-type model.
However, there are two restrictive assumptions often
made with parametric approaches; the possible shapes
of distributions are predefined, and the ways how co-
variates affect in a model are fixed in advance. Further,
one easily faces problems if the interactions between
covariates are introduced explicitly in the model, espe-
cially when the number of covariates is large. To loosen
such assumptions, more flexible approaches, such as
nonparametric neural networks have been suggested to
be used in the analyses of length of stay distributions
[13, 14]. However, the actual applications seem to be
rare, and we are not aware of any systematic compar-
isons between the traditional parametric models and
more flexible nonparametric alternatives in the case of
modelling the length of stay distributions.

In this study we present Bayesian methodology to
the modelling of length of stay distribution data that
includes covariates. The modelling is investigated in
the case of patient length of stay in care episode after
a fractured hip, where the whole care episodes were
reconstructed by using large register-based data ex-
tracted from the comprehensive administrative health
registers. The aim of the study is to develop a flexible
nonparametric multilayer perceptron (MLP) network
model as well as a parametric Weibull mixture model
to be used with the LOS data, and to compare the mod-
els and their predictive performances. The Bayesian
approach (see, e.g. [15, 16]) is adopted throughout for
both models, and the integration over parameter spaces
is approximated with stochastic Markov chain Monte
Carlo (MCMC) methods. Since the parameters in the
MLP and the Weibull mixture model are incomparable,
we demonstrate how it is possible to focus on observ-

ables rather than the model parameters, and to perform
the actual comparisons by using posterior predictive
checking. We show how the performances of the mod-
els can be evaluated by estimating expected utilities.
As a utility measure, we use a predictive density for an
independent test data. We also present pragmatic tools
to find out the most relevant covariates in predicting
the patient length of stay. The idea is to assess the aver-
age predictive sensitivities of covariates, and to study
the joint predictive sensitivities of two covariates by
measuring the change in a predictive distribution with
the information theoretic Kullback-Leibler divergence
when the values of two covariates are simultaneously
changed. We also compare the covariate relevances
given by both models, and demonstrate how the ability
of models to capture the characteristics in the data can
be visually evaluated.

The paper is organised as follows. Section 2 presents
the register data on hip fractures. In Section 3 the
nonparametric and parametric approaches and MCMC
techniques are explained. Section 4 shows the results
on posterior predictive checking, and conclusion is pro-
vided in Section 5.

2 Register data on hip fractures

Hip fractures are common injuries among the elderly.
As the incidence of the injury is increasing, treatment
and rehabilitation of the patients are likely to be a ma-
jor challenge for the health systems in the near future
[17]. The treatment of hip fractures virtually always
requires a surgical operation at hospital, and a typically
rather lengthy follow-up care at local rehabilitation
facilities [18]. Length of stay is a major determinant
in the cost of hip fracture treatment as less than one-
fourth of the costs is caused by acute care [19]. It is
also likely that the most differences between service
providers in LOS following the hip fracture are due to
patterns of care rather than characteristics of patients
[20]. In addition, hip fracture has been characterized as
a tracer condition in health systems, testing how well
health and social services are integrated in the provision
of acute care, rehabilitation, and continuing support for
a large and vulnerable group of elderly patients [21].
In this sense, LOS following the hip fracture is a very
attractive and important performance indicator.

The pragmatic problem with this indicator has been
that the treatment of hip fracture patients typically
consists of several phases in various facilities, and it may
be challenging to obtain adequate data.

In this study, Finnish register data were used. The
collection of data set has been described in detail
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elsewhere [22]. In brief, a total population of patients
diagnosed with a fractured hip (International Classifi-
cation of Diseases revision 10 diagnosis codes S72.0,
S72.1 and S72.2) in Finland between 1998–2001 was
identified from the Finnish Health Care register. The
medical histories of these patients during the years
1987–2002, including data on hospital care, nursing
home care, and causes of deaths were obtained from
the Finnish Hospital Discharge Register, the Finnish
Health and Social Welfare Care Register, and the
National Causes of Death Statistics using the unique
national personal identity codes of the patient popu-
lation. Each record in the data corresponded to one
care period and included variables such as provider
and area codes, dates of admission, operation and dis-
charge, as well as diagnoses and operation codes. As
virtually all hip fracture patients need inpatient hospi-
tal care and as the diagnosis is relatively straightfor-
ward, the total hip fracture population can be reliably
identified from the register data. The completeness
of registration and the accuracy of easily measurable
variables in the Finnish register-data has been found to
be very good for the purposes of hip fracture follow-up
studies [23].

In order to determine the full LOS following the
hip fracture, a care episode approach was utilized [24].
The care episode after the fracture was defined as time
between the beginning of operative treatment at the
surgical ward, and discharge to home. The care episode
included all care periods at different wards in hospitals,
at primary care inpatient care wards, at nursing homes
and at other inpatient residential care as far as there
was no discharge to home between the consecutive
periods. The comprehensive Finnish register data with
the possibility for deterministic record linkage made
this care episode reconstruction possible. In fact, it
has been demonstrated that register data outperform
prospective audit data in the recording of inpatient care
history [23].

If the care episode lasted over four months, the
patient was classified as a long-term patient [25]. Since
the main interest was on modelling successful care
episodes, only short-term patients were included in this
study. In order to concentrate on the geriatric rehabil-
itation of patients, the patients aged less than 65 years
or not living at home at the time of fracture were also
excluded. In modelling care episode times, we used an
accuracy of one week, as it was considered sufficient
precision with respect to the interests of the study.

Available background variables included age, sex,
fracture type, the place from which the patient was
admitted to the surgical ward, and the days of inpatient
care during one year before the fracture. Fracture types
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Fig. 1 Patient length of stay in care episode after a hip fracture
in Finland during 1998–2001

were classified into intracapsular and extracapsular hip
fractures, and the inpatient care days covariate was
transformed by square root transformation because the
count of days could be zero which prevented the use of
log-transformation. Pre-existing comorbid conditions
were also identified for each patient similarly as in Sund
and Liski [26].

The final study population consisted of 10 058 per-
sons. The shape of the length of stay distribution was
right-skewed (Fig. 1) that is typical for survival data.
The lower quartile was 17, median 31 and upper quar-
tile 52 days. Table 1 lists all the covariates of this
study.

Table 1 Covariates for use in predicting patient length of stay

Variable description Range

x1 Age 65–103
x2 Women sex 0/1
x3 Intracapsular fracture 0/1
x4 Admitted from home 0/1
x5 Days of preceding care (square root) 0–17.86
x6 Malignancy 0/1
x7 Chronic obstructive pulmonary disease 0/1
x8 Ischemic heart disease 0/1
x9 Previous myocardial infarction 0/1
x10 Congestive heart failure 0/1
x11 Cerebrovascular disease 0/1
x12 Peripheral vascular disease 0/1
x13 Diabetes without complications 0/1
x14 Osteoarthritis 0/1
x15 Parkinson’s disease 0/1
x16 Dementia 0/1
x17 Alcoholism 0/1



Health Care Manag Sci (2010) 13:170–181 173

3 Statistical models

Since health care processes are complex, and humans
are a large source of variation, a flexible nonparametric
Bayesian multilayer perceptron model is considered for
modelling the patient length of stay. As a parametric
reference model, we use a model based on a Weibull
distribution, and in order to allow more flexibility in
modelling, we extend our analysis to a mixture model,
and use a two component Weibull mixture as the para-
metric approach to analyse length of stay. Bayesian
modelling is employed in analysis for both models. In
Bayesian analysis uncertain quantities are modelled as
probability distributions, and inference is performed by
computing the posterior conditional probabilities for
the unobserved variables of interest, given the observed
data and prior assumptions [15, 16].

3.1 Nonparametric multilayer perceptron approach

To study the distribution of patient length of stay
without assuming possible shapes in advance, we apply
a nonparametric approach based on a Bayesian multi-
layer perceptron model, and treat the modelling of
length of stay as a classification problem where each
class corresponds to the patient length of stay at a
desired accuracy. No dependencies between the se-
quential classes are assumed a priori, and possible de-
pendencies are only in a posteriori sense. Therefore,
the MLP approach allows a flexible way to present
the forms of distributions without assuming functional
forms in advance. Another advantage with the MLP
is that possible nonlinearities and implicit interactions
can be automatically learned from the data.

For multilayer perceptron neural networks, the
Bayesian approach is reviewed for instance by Neal
[27] and Lampinen and Vehtari [28]. An MLP is a
feedforward neural network model comprising of suc-
cessive input, hidden, and output layers. The MLP func-
tion, corresponding to the neural network with a single
hidden layer, is written as

fk(xi, w) = wk0 +
L∑

l=1

wkl tanh

(
wl0 +

D∑

d=1

wldx(i)
d

)
, (1)

where w represents all the weight parameters wkl and
wld and bias parameters wk0 and wl0 of the model [27].
Indices d and l correspond to input and hidden layers,
and the D-dimensional input vector is denoted by xi =
(x(i)

1 , . . . , x(i)
D )T . In the context of neural networks, L

represents the number of hidden units in the hidden
layer of the network. Precisely, the MLP would become

nonparametric when the number of hidden units ap-
proaches infinity, but here we approximate the infinite
network with a finite one, and in a practical sense
consider the finite network to be nonparametric. With
the MLP function interactions between the covariates
are possible, and nonlinear hyperbolic tangent (tanh)
activation functions allow the hidden units to represent
nonlinearities. In the classification of length of stay
times, we apply the softmax model. With K possible
output classes, the probability that a class target yi has
value j, is computed using softmax likelihood

p(yi = j|xi, w) = exp( f j(xi, w))
∑K

k=1 exp( fk(xi, w))
, (2)

as it was done for instance in Lampinen and Vehtari
[28].

In the MLP model the prior is set indirectly to a func-
tion space via network and weight priors. We assume a
hierarchical prior, where the uncertainty of parameter
values can be transferred into higher levels, and fix
the hyperprior values similar to those in Neal [27] and
Lampinen and Vehtari [28]. For the input to hidden
weights, we use the following Automatic Relevance
Determination (ARD) hierarchical structure

wld ∼ N
(
0, γ 2

d

)
(3)

γ 2
d ∼ Inv-gamma

(
γ 2

ave, νγ

)
(4)

γ 2
ave ∼ Inv-gamma

(
γ 2

0 , νγ,ave
)
. (5)

In the ARD prior, the weights connected to the same
input have a common variance term γ 2

d . The variance
γ 2

d is controlled by the next level hyperparameters γ 2
ave

and νγ , which further are controlled by the third level
hyperparameters γ 2

0 and νγ,ave. We fixed the following
values in the prior: νγ = 1, γ 2

0 = (0.05/D1/νγ,ave)2 and
νγ,ave = 2. The scaling of prior depends on the number
of inputs D, thus the more input units there are in the
network, the smaller the average weights are assumed
to be. For the biases in the hidden layer of the network,
we set the prior

wl0 ∼ N
(
0, γ 2

b

)
(6)

γ 2
b ∼ Inv-gamma(0.052, 1). (7)

Further, the weights between hidden and output layers
were given the prior

wkl ∼ N
(
0, γ 2

l

)
(8)

γ 2
l ∼ Inv-gamma((0.05/D)2, 1), (9)

and the output biases wk0 were given N(0, 1) prior.
The assumed prior for the weights and biases of the
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network favours smooth solutions since small weights
produce smooth functions. Therefore, if there is not
enough information in the data, the model automati-
cally reverts to results similar to simpler models. For
further details and justifications of the prior, see Neal
[27] and Lampinen and Vehtari [28].

We used a 16-hidden-unit MLP network with 17
output classes corresponding to the length of stay times
at an accuracy of one week. The integration over poste-
rior distribution was approximated as described in Neal
[27]: the weight and bias parameters were sampled with
a hybrid Monte Carlo (HMC) algorithm [29], and hy-
perparameters with Gibbs sampling. The computations
were implemented using MATLAB software with the
MCMC Methods for MLP and GP and Stuff -toolbox
[30]. We computed an MCMC chain of 25 000 iterations
of which, after burn-in stage and thinning, 100 samples
were used in the posterior analysis. There were some
convergence difficulties due to the large number of
parameters in the model, and the multimodality of the
posterior distribution. The convergence was assessed
by multiple MCMC chains, visual inspection and the
potential scale reduction factor [15]. The results given
by the independent MCMC chains were similar.

3.2 Parametric Weibull mixture approach

As the parametric reference approach for modelling
patient length of stay, we use a Weibull mixture model
where explanatory variables are introduced through
log-linear functions, and a weakly informative prior is
set for the model parameters. As a starting point, we
consider the Weibull distribution due to its wide use in
survival analysis, and because of the distribution shape
of the length of stay data in Fig. 1. The two parameter
Weibull distribution is parameterised as

fm(yi|αm, λm) = αm yαm−1
i exp

(
λm − exp(λm)yαm

i

)
(10)

[31], where yi is the ith observation and αm and λm are
the distribution parameters. To model possible latent
classes more accurately, we proceed to apply a mixture
model of Weibull distributions. The mixture approach
gives flexibility in modelling length of stay by allowing
subpopulations to have specific length of stay patterns.
The Weibull mixture, with the known number of com-
ponents M, is written as

f (yi|α, λ, μ) =
M∑

m=1

μmαm yαm−1
i exp(λm − exp

(
λm)yαm

i

)
,

(11)

where α = (α1 . . . , αM)T and λ = (λ1, . . . , λM)T . The
parameters μ = (μ1, . . . , μM)T are the mixture propor-
tions with the constraints 0<μm <1 and

∑M
m=1 μm =1.

In modelling the length of care episode stay for the hip
fracture patients, the interest in the study was on mod-
elling the short-term patients only, leading to truncated
data with a known truncation point at four months.
Therefore we need to truncate the parametric model.
The truncated mixture component is given by

fTm(yi|αm, λm) = αm yαm−1
i exp(λm − exp(λm)yαm

i )

1 − exp(− exp(λm)yαm
tp )

, (12)

where ytp denotes the truncation point, and the trun-
cated Weibull mixture is

fT(yi|α, λ, μ) =
M∑

m=1

μm
αm yαm−1

i exp(λm − exp(λm)yαm
i )

1 − exp(− exp(λm)yαm
tp )

.

(13)

We introduce the covariates in the Weibull distribu-
tion through λm parameters [31], such that λmi = x̃T

i βm,
where the (1 + D)-dimensional covariate vector corre-
sponding the ith observation is x̃i = (1, x(i)

1 , . . . , x(i)
D )T ,

and βm = (β
(m)
0 , β

(m)
1 , . . . , β

(m)

D )T are the regression co-
efficients. The likelihood as a function of α, β and μ is
written as

p(y|X, α, β, μ)

=
N∏

i=1

(
M∑

m=1

μm
αm yαm−1

i exp(x̃T
i βm − exp(x̃T

i βm)yαm
i )

1 − exp(− exp(x̃T
i βm)yαm

tp )

)
,

(14)

where y = (y1, . . . , yN)T denotes the entire set of ob-
servations, X denotes N × D matrix of covariates, and
β contains all the regression coefficient vectors.

For αm parameters a weakly informative Gamma
distribution prior G(αm|α0, κ0) ∝ αα0−1

m exp(−κ0αm) is
assumed, in which the parameters are given values
α0 = 1 and κ0 = 0.001. For the regression coefficients,
we set a zero mean normal prior N(βm|0, σ 2 I), where
σ 2 = 104 and I is the identity matrix. The prior is
chosen to be weakly informative, as there is no a priori
information about the values of regression coefficients.
A Dirichlet prior distribution is set for the mixing co-
efficient μ ∼ Dirichlet(φ1, . . . , φM), where φ1 = . . . =
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φM = 1. The product of likelihood and prior leads to
an unnormalised posterior distribution

p(α, β, μ|y, X)

∝
N∏

i=1

(
M∑

m=1

μm
αm yαm−1

i exp(x̃T
i βm − exp(x̃T

i βm)yαm
i )

1 − exp(− exp(x̃T
i βm)yαm

tp )

)

×
M∏

m=1

N(βm|0, σ 2 I)

M∏

m=1

G(αm|α0, κ0)

× Dirichlet(μ|φ1, . . . , φM). (15)

We approximate the integration over the parameter
space of the model using Gibbs sampling with data
augmentation by introducing an unobserved indica-
tor variable ζim in the model [15, 32]. The indicator
variable is

ζim =

⎧
⎪⎨

⎪⎩

1 if the ith observation is from the mth

mixture component, and

0 otherwise.

The following simulation steps are then repeatedly used
to draw samples from the posterior:

1. Given the mixture proportions μ and parameters
α and β, the latent indicators ζim are generated
from a multinomial distribution with the following
probabilities

zim = μm fTm(yi|αm, λm)
∑M

k=1 μk fTk(yi|αk, λk)
.

2. Given the latent indicators ζim and parameters α

and β, the mixture proportions are sampled from
the μ∼Dirichlet(φ1+ ∑N

i=1 ζi1, . . . , φM +∑N
i=1 ζiM).

3. Given the latent indicators ζim and mixture pro-
portions μ, the parameters αm and βm of mixture
components are sampled from

p(αm, βm|y, X, ζm, μ)

∝
N∏

i=1

(
αm yαm−1

i exp(x̃T
i βm − exp(x̃T

i βm)yαm
i )

1 − exp(− exp(x̃T
i βm)yαm

tp )

)ζim

× N(βm|0, σ 2 I)G(αm|α0, κ0)

with slice sampling [33], where ζm = (ζ1m, . . . ,

ζNm)T .

We modelled the patient length of stay with a two
component Weibull mixture. By increasing the num-
ber of mixture components, the model would become
more accurate, but also the estimation of parameters
becomes more difficult. To approximate the integration

over the posterior distribution, we ran several indepen-
dent MCMC chains of 100 000 iterations. The conver-
gence was checked similarly as with the MLP model,
and after burn-in stage and thinning, 100 samples were
used in the posterior analysis.

4 Predictive comparisons

A natural way to assess the goodness of a model is to
evaluate its predictive ability for future observations
by estimating expected utilities [16, 34]. The poste-
rior predictive distribution for the test input x(N+1) is
given by

p(y|x(N+1), y, X) =
∫

p(y|x(N+1), y, X, θ)p(θ |y, X)dθ,

(16)

where θ denotes all the model parameters, and y and
X are the training data. The logarithm of predictive
density is chosen as a utility measure since it measures
how good the model is in modelling the whole predic-
tive distribution. A utility uh for a future observation
(x(N+h), y(N+h)), is given by

uh = log p(y(N+h)|x(N+h), y, X), (17)

where h = 1, 2, . . . indexes all the observations in the
test data set. We use the mean

ū = Eh [uh] (18)

as a summary quantity for the predictive ability of the
models. Since the observations y are discrete, and in the
parametric approach their distribution is approximated
by the continuous Weibull mixture model, we do a
continuity correction. The correction is done by using
the integration limits y ± 1/2 in the Weibull mixture
when computing the predictive density Eq. 16 for the
observation y.

We divided the data into two equally sized parts,
and estimated the expected utility for both models with
the test part of the data. The expected utilities with
95% credible intervals were −2.46 ± 0.02 for the MLP,
and −2.48 ± 0.02 for the Weibull mixture (−2.51 ± 0.02
with a single truncated Weibull distribution). In a pair-
wise test the MLP was better than the two component
Weibull mixture with a probability greater than 0.999,
indicating more accurate predictions with the MLP
model. Further, we computed the expected utilities
separately for the patients diagnosed with either intra-
or extracapsular fracture. The MLP gave the expected
utility −2.37 for intracapsular, and −2.64 for extracap-
sular patients. With the Weibull mixture the utilities
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were −2.38 for intracapsular, and −2.66 for extracap-
sular patients (−2.42 and −2.68 with a single truncated
Weibull distribution). The results suggest that the MLP
gives more accurate predictions, and that the length of
care episode stay is predicted more accurately for intra-
capsular than extracapsular patients with both models.

Figure 2 illustrates the mean distributions of length
of stay for both fracture types using the MLP and the
Weibull mixture. The distributions for intracapsular
patients, with unimodal and right-skewed shapes, are
similar with both models. Noticeable difference is in the
distributions for extracapsular patients. The Weibull
mixture gives a simple unimodal distribution, whereas
the MLP suggests that the length of stay distribution is
multimodal with no systematic decrease in probabilities
until the mode at 7 weeks. The second mode is missed
with the Weibull mixture, and may be due to the fixed
forms of parametric distributions. The length of stay
distributions for extracapsular patients are wider than
for intracapsular patients with both models, explaining
the worse expected utilities for extracapsular patients.

Since the parameters of the models cannot be com-
pared, we study the relevances of covariates in pre-
dicting the length of care episode stay. To find out
the most relevant variables in the prediction, we use
the average predictive comparison method proposed
by Gelman and Pardoe [35]. The method estimates the
expected difference in the outcome associated with a
unit difference in one of the covariate. The method
takes into account the uncertainty of model parameters,
and averages over the population distribution of the
covariates, which is useful with nonlinear models. To

compute the average predictive comparison, we define
the probability of early discharge from care episode as
the outcome of interest. The patient is classified as early
discharge patient if the discharge happens during weeks
1–5. Both models give somewhat similar relevance esti-
mates for the covariates (Fig. 3). The estimates away
from zero show more relevance, and thereby the most
relevant covariates in predicting length of stay are age
and fracture type. In addition to the relevance estimates
of single covariates, we study further the joint rele-
vances of two covariates since there may be interactions
between the covariates. To find out the joint relevances,
we measure the change in the predictive distribution
Eq. 16, when the values of two covariates are simulta-
neously changed. The change is measured between the
predictive distributions with the information theoretic
Kullback-Leibler (KL) divergence

δ
joint
i =

∫
p(y|xi, y, X) log

(
p(y|xi, y, X)

p(y|x
i , y, X)

)
dy, (19)

where xi denotes the observed vector of covariate val-
ues, and x

i is the same vector but with two covariate
values changed with a unit difference. We normalise the
divergence with a euclidean distance from xi to x

i , and
average over the observed population as

v̄ = Ei

[
δ

joint
i

‖xi − x
i ‖

]
, (20)

where v̄ is the estimate for the joint relevance of two
covariates in predicting the length of care episode stay.
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Fig. 2 Estimated mean distributions of length of stay in care episode for two fracture types with the multilayer perceptron (a) and the
Weibull mixture model (b)
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Fig. 3 Estimated average
predictive comparisons for
the probability of early
discharge from care episode.
The estimated mean values
and 95% credible intervals
are shown for the multilayer
perceptron (MLP) and the
Weibull mixture model
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Figure 4 demonstrates the joint relevance estimates
of other covariates with the age covariate. Fracture type
and age has the largest estimate for the joint relevance
with both models. Further, the Weibull mixture gives
almost throughout greater estimates for the joint rel-

evance than the MLP. The difference in the estimates
is the largest at the joint estimate of Parkinson’s dis-
ease and age, where the Weibull mixture gives signifi-
cantly greater estimate for the joint relevance than the
MLP. To examine in more detail the capabilities of the

Fig. 4 Estimated joint
predictive relevances of other
covariates with the age
covariate for the multilayer
perceptron (MLP) and the
Weibull mixture model
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Fig. 5 Estimated mean and 95% credible intervals for the prob-
ability of early discharge as a function of age and fracture type
described as shaded plots with the multilayer perceptron (a) and
the Weibull mixture model (b). Thin lines describe the individual

predictions grouped by age and fracture type. The crude esti-
mates from the data are also illustrated as vertical segments of
lines (mean and 95% credible intervals)

models to model joint effects, we use posterior predic-
tive simulation and comparison to the data. We study
the probability of early discharge from care episode
(defined as earlier) as a function of fracture type and
age, whose joint relevance estimate was large and simi-
lar with both models (Fig. 4). We simulate the effects of
two covariates with the models by changing the values
of the two covariates for a randomly chosen simula-

tion population. The simulated mean values and 95%
credible interval predictions are shown in Fig. 5. As
a reference for the simulated predictions, we compute
data estimates using a binomial model with a weakly
informative Beta prior distribution whose mean value
was set to the mean value observed in the data set.
The mean values and 95% credible intervals of the data
estimates are illustrated as dots and vertical segments of
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Fig. 6 Estimated mean and 95% credible intervals for the prob-
ability of early discharge as a function of age and Parkinson’s
disease described as shaded plots with the multilayer perceptron
(a) and the Weibull mixture model (b). Thin lines describe the

individual predictions grouped by age and whether the patient
has Parkinson’s disease or not. The crude estimates from the data
are also illustrated as vertical segments of lines (mean and 95%
credible intervals)
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lines in Fig. 5. The results indicate that the MLP model
gives more accurate results than the Weibull mixture
when simulated values are compared to the data es-
timates. There is a clear interaction between fracture
type and age, seen in how differently age affects the
probability of early discharge depending on which of
the fractures a patient has. The Weibull mixture fails
to model accurately the nonlinearities and interactions
since the covariates affect log-linearly in the model.
Further, since the Weibull mixture has a rigid model
structure, the uncertainty in the predictions is estimated
to be much lower than with the MLP, giving proba-
bly overoptimistic uncertainty estimates for the predic-
tions. This can be seen especially for patients over 90.

It must be noticed that other covariates, which pos-
sibly correlate with fracture type and age, may have
an effect on the simulation results in Fig. 5. To find
out if there is some other correlating covariate, we
also computed the predictions for the individuals in the
simulation population without changing the covariate
values. By doing age grouping for both fractures, we
present 95% credible intervals for the individual pre-
dictions as thin lines (Fig. 5). The individual predictions
coincide well with the simulated predictions, making
evident that merely fracture type and age explain these
changes in the predictions.

Since the joint relevance estimates differed mostly
between the MLP and Weibull mixture models for the
Parkinson’s disease and age covariate pair (Fig. 4),
we also visualise the early discharge probability as a
function of these two variables (Fig. 6). There is only
a small number of Parkinson’s disease observations
in the data, causing large uncertainty intervals. Both
models fail to capture the lower probability between
ages 65 and 70 for the patients diagnosed with Parkin-
son’s disease. The large difference in the joint relevance
estimates between the models is explained by compar-
ing the results in Fig. 6; the age covariate affects the
early discharge probability less in the MLP when the
patient is diagnosed with Parkinson’s disease, whereas
the Weibull mixture gives a clearly decreasing trend.
It seems that age is an overall indicator for health,
but if patient is diagnosed with Parkinson’s disease,
this illness is sufficient merely to change the predictive
distribution for the length of care episode stay using the
MLP model.

5 Conclusions

In this paper we have studied the modelling of the
length of care episode stay with the nonparametric and
parametric Bayesian models. The case study was about

LOS following the hip fracture. We used comprehen-
sive Finnish register data in the reconstruction of the
care episodes that crossed the boundaries of service
providers. The idea of care episode approach is not
new [36], but the lack of adequate data has made it
difficult to utilize it in practice [37]. Fortunately, the
Finnish register system with common personal identity
codes in all registers and good data quality [38] made
the reconstruction of inpatient care episodes for the
total population of hip fracture patients in Finland
feasible [22]. It has also been shown that a register-
based reconstruction of care episodes performs better
than with a separate prospective audit data collection
[23]. The main drawback of the register-based data is
the lack of clinical background variables [39].

One aim of this study was the accurate modelling of
patient length of stay. For that purpose, we wanted to
compare a traditional parametric model and a nonpara-
metric multilayer perceptron network model.

In the literature, commonly utilized parametric LOS
models include exponential, Weibull, lognormal, and
gamma models [8, 40]. Based on the observed shape
of the LOS distribution, we considered Weibull model
to be a suitable parametric candidate. As the use of
mixture models allows more flexibility [41], we decided
to use a Weibull mixture model as a parametric refer-
ence model. It is possible that a mixture model with
some other component distributions such as gamma
[42], a mixture of different parametric distributions as
its mixture components [11], or a Coxian phase-type
distribution [43] may give a better performance for this
particular length of stay data, but the testing of a large
number of rather similar parametric models was out of
the scope of this study.

The nonparametric multilayer perceptron network
model is a flexible approach that also suits to the mod-
elling of LOS distribution with covariates. So far the
attempts to model LOS with neural networks seem to
be rare [13, 14]. This may be due to the fact that the
interpretation and explainability of the results become
more challenging. On the other hand, the modelling
of complex systems may be even more useful with
complex nonparametric methods than with parametric
ones, especially if the predefined parametric model can-
not represent the phenomenon under study sufficiently
well.

The Bayesian MLP model results in comprehensive
information about the systematic patterns occurring
in the data without the need to fix the relationships
between the variables, as it is needed in Bayesian be-
lief networks that have been used to predict patient
length of stay [44]. Therefore, the MLP model can be
advantageous also for exploratory analysis, especially
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in cases when there is no a priori expertise informa-
tion about causal relationships between variables. The
MLP model is also suitable for modelling continuous
explanatory variables, which are difficult to handle with
classification or regression tree models, sometimes ap-
plied for length of stay analysis [45]. There are also
other miscellaneous classifiers (see, e.g. [46]), but test-
ing of several classifiers was out of the scope of this
study. The Bayesian MLP model has performed well in
public classification comparisons [47].

We adopted the Bayesian approach for modelling,
and formulated a nonparametric multilayer perceptron
network model as well as a parametric Weibull mixture
model for the modelling of LOS data with covariates.
We also wanted to compare the models and their pre-
dictive performances. Since the parameters in the MLP
and the Weibull mixture model were incomparable, we
focused on observables rather than the model parame-
ters, and studied the performances of the multilayer
perceptron and the Weibull mixture model by doing
posterior predictive checking, and by comparing the
predictive distributions visually.

There were noticeable differences in the results. The
parametric Weibull mixture was insufficient to capture
the characteristics in the data accurately due to the
fixed forms of distributions, and log-linearly introduced
covariates in the model. For instance, the anomaly in
the shapes of the length of stay distribution between
intra- and extracapsular fractures, were missed with
the Weibull mixture. Actually the anomaly detected by
the MLP model was clinically interesting, and a more
careful investigation on the issue has been reported
elsewhere [48]. In brief, the rehabilitation of patients
with extracapsular fractures took longer than in the
intracapsular group. The difference was due to the
different surgical methods and especially to the dif-
ferent rehabilitation practices. This means that service
providers may be using outdated practices, such as
instructing most of the patients with extracapsular frac-
tures to start rehabilitation with partial weight-bearing
although that is in contrast with the clinical guidelines.

In order to identify the most relevant variables in
predicting the care episode times, the relevances of
covariates were estimated by doing average predictive
comparison. To provide a better understanding of how
patient covariates affect the predictions of the length
of stay, the joint effects of the covariates were also
studied. The average predictive comparison for both
models gave similar results, but when illustrating the
interactions between two covariates, the predictions
differed noticeably. This was studied further by ob-
serving the probability of early discharge from care
episode as a function of two covariates. The predic-

tions given by the MLP model were closer to the data
estimates than with the Weibull mixture. In general,
the Weibull mixture gave over-optimistic uncertainty
estimates, whereas the MLP model gave more accurate
results with the larger uncertainty intervals suggesting
more realistic estimates.

In conclusion, the Bayesian MLP model is a vi-
able alternative to model the large scale health care
data featuring nonlinear effects and interactions. We
have also demonstrated how such a complex Bayesian
approach can be used for practical performance evalu-
ation, and showed implementations of several method-
ological ideas that make the concrete analyses more
feasible, and are therefore likely to be useful also in
more general context. Further research involves in-
cluding costs in the models to study cost-effectiveness,
and also taking regional variables into account. For
instance, in the MLP model regional effects can be
modelled without need to model the regional hierarchy
explicitly in the model structure.
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