
A. PTH

It has been suggested that HDM is caused by raised
levels of PTH associated with secondary hyperparathy-
roidism, rather vitamin D deficiency itself [91]. Fatigue
and muscular weakness are classically associated with
primary hyperparathyroidism [92–95], and successful
parathyroid surgery results in significant improvement
of these muscular symptoms [92,94,96]. In addition,
muscle biopsies obtained from patients with primary
hyperparathyroidism reveal type II fiber atrophy, very
much like the changes seen in HDM. Treatment with
PTH reduces the intracellular content of inorganic
phosphate, creatine phosphate, and CaATPase [97],
which are exactly the findings we reported after analysis
of muscle biopsies and 31P-MR-spectroscopy in patients
with HDM [23,66]. Furthermore, mitochondrial oxygen
consumption and the activity of creatine phosphokinase
and CaATPase are reduced and oxidation of long-chain
fatty acids impaired by PTH [98].

Thus, many parallels exist between myopathy
caused by primary hyperparathyroidism and HDM.
However, muscle weakness is not always present in
patients with primary hyperparathyroidism [3,99], and
HDM can be present despite normal PTH levels [9].
Further, improvements in muscle strength after surgery
for primary hyperparathyroidism do not correlate to
postoperative decreases in PTH or calcium [94,100].

If PTH was the only effector on skeletal muscle,
reversal of secondary hyperparathyroidism by a high
intake of calcium should reverse the muscular symp-
toms. However, in their rat study Rodman and Baker [45]
detected severe perturbations of muscle function in
vitamin D-deficient rats despite high serum levels of
calcium and phosphate (Fig. 4). Furthermore, in a study
on type II fiber size in hip fracture patients, Sato et al.
[54] reported a significant correlation between serum
levels of 25OHD and fiber size—no correlation to PTH
was reported.

Generally, clinical studies [8,56,89] report inverse
correlations between PTH and muscle symptoms, and
positive correlations to 25OHD [8,56,58,59,89]. In a
comment accompanying the study of Stein et al. [56],
Birge [83] suggested that PTH might be a better bio-
logical marker for vitamin D deficiency at the tissue
level than serum levels of 25OHD, and this could be
the reason why PTH and not 25OHD come out as
significant determinants in multiple regression analyses.
In this context, however, the significant interaction
between 25OHD and PTH has to be taken into account.

In conclusion: There is strong evidence for a direct
effect of vitamin D on muscle both in clinical and
experimental studies. It is possible, however, that
secondary hyperparathyroidism may exert additive or
synergistic effects on HDM development.

B. 1,25(OH)2D

Theoretically, 1,25(OH)2D concentrations should be
the most likely effector of vitamin D effects on muscle—
and indeed, a large amount of experimental data sup-
port this notion (see Chapter 55). In clinical studies,
however, this expected relationship finds less support
[59]. Glerup et al. [8,23] found no correlation between
muscle function and 1,25(OH)2D (r = −0.14, NS),
whereas maximal knee extension strength correlated
significantly to 25OHD (r = 0.34, p < 0.01). In fact, it is
common to see severe symptoms of HDM with normal
or even elevated values of 1,25(OH)2D. Furthermore,
hypovitaminosis D–related symptoms (diffuse muscle
pain, deep bone pain, paresthesia, fatigue, muscle
cramps, joint pain) all correlated to 25OHD (Kruskal-
Wallis ANOVA: p < 0.001) but not to 1,25(OH)2D
(NS). The absence of correlations to 1,25(OH)2D is
probably explained by several factors. First, renal 1-α-
hydroxylase activity is under tight control by PTH
levels, resulting in normal or even elevated levels of
1,25(OH)2D, despite very low levels of 25OHD.
Second, serum levels of 1,25(OH)2D don’t necessarily
tell anything about the intracellular levels of the hor-
mone in muscle cells. Third, Geusens et al. [67] have
shown clinical importance of VDR-genotypes, which
support an in vivo effect of VDR-mediated effects.
Thus, 1,25(OH)2D seems to be involved in the patho-
genesis of HDM. One hypothesis may reconcile
the inconsistencies outlined above, namely the pur-
ported presence of intracellular, autocrine production
of 1,25(OH)2D from 25OHD in muscle cells [68].
There is an increasing amount of evidence suggesting
the clinical importance of extrarenal 1,25(OH)2D syn-
thesis [101–107] (see Chapter 79). Two features distin-
guish extrarenal from renal synthesis of 1,25(OH)2D: 1)
it is not under control of PTH, but is dependent on
the availability of the substrate 25OHD; 2) local 1,25-
(OH)2D synthesis has been shown to take place in the
mitochondria [101]. Muscle has a very high content of
mitochondria, which makes muscle a very likely site of
extrarenal 1,25(OH)2D synthesis. Intracellular produc-
tion of 1,25(OH)2D could explain the correlation
between 25OHD and the muscular effects of vitamin D.
Further, this pathway still requires 1,25(OH)2D to be
the final effector of vitamin D’s muscular effects. It has
been argued that local 1,25(OH)2D synthesis in muscle
should result in increased serum levels of 1,25(OH)2D.
Significant local 1,25OH2D production has been
identified in other tissues (endothelium [102], prostate
[106], bone cells, liver cells, skin, etc. [103]), but these
sites do not result in increased serum levels of
1,25(OH)2D. The absence of increased 1,25(OH)2D in
these instances is most likely explained by the pres-
ence of highly-induced intracellular 24-hydroxylase
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activity, ensuring degradation of 1,25OH2D before
it reaches the circulation. Also, failure of release of
1,25(OH)2D into the circulation may be an additional
factor.

C. 25OHD

25OHD is considered to be the storage and circulating
form of vitamin D, and measurement of serum levels
of 25OHD best reflect the vitamin D status of the body.
25OHD has been presumed to be biologically inert,
but recent data challenge this notion. As already men-
tioned above, serum levels of 25OHD correlate to
the biological effects of vitamin D in vivo. The effects
of 25OHD on muscle cells could be mediated in sev-
eral ways. 25OHD has some affinity for VDR, but
the affinity of 1,25(OH)2D for VDR is approximately
1000-fold higher than 25OHD. The serum concentra-
tion of 25OHD is about 500–1000 times higher than
1,25(OH)2D, but most is bound to vitamin D binding
protein (DBP) (see Chapter 8). Competitive binding of
the two vitamin D metabolites to VDR might be possi-
ble under some circumstances [108–110]. No specific
receptor for 25OHD has been identified. As mentioned
in the paragraph above, a more likely explanation is
the local synthesis of 1,25(OH)2D from 25OHD as
substrate.

Finally, it is possible that 25OHD could exert direct
effects on muscle via an effector-mechanism, which
is still under investigation. Recently, Nykjaer et al.
[111–113] (see Chapter 10) identified the cubilin-
megalin receptor system as being responsible for renal
reuptake of vitamin D metabolites bound to DBP. Muscle
tissue possesses receptors of the LDL receptor family,
which potentially could be involved in tissue specific
uptake of 25OHD, but this still needs to be investigated
(personal communication A. Nykjaer).

VIII. OTHER POSSIBLE MUSCULAR
EFFECTS OF VITAMIN D

A. Insulin Resistance in Vitamin D
Deficiency — Due To HDM?

Vitamin D deficiency has been reported to increase
the risk of developing insulin resistance and abnormal
oral glucose tolerance tests (OGTT) [114–117].
Striated muscle is central in the pathogenesis of 
Type 2 diabetes. GLUT4 is the most important glucose
transporter in muscle [118–120]. The GLUT4 content
of muscles declines with age [118,120], especially
in the fast type II muscle fibers. Furthermore, GLUT4

is reduced in type 2 diabetes [119]. More research is
necessary to establish a possible effect of vitamin D on
the GLUT4 content of the muscle.

In type 2 diabetes, serum levels of free fatty acids
are elevated [121,122]. Significant perturbations in the
energy metabolism of mitochondria in muscle has
been described in hypovitaminosis D [66], as well as 
in the presence of increased levels of PTH [97].
Additional research is warranted on the possible
effects of vitamin D and PTH on fatty oxidation in 
striated muscle.

B. Possible Effects of Vitamin D
on Muscle Regeneration

During exercise, serum levels of 1,25(OH)2D have
been reported to increase temporarily [123–127].
Exercise damages the muscle fibers and induces regen-
eration and growth of the muscle through enhanced
satellite cell proliferation [128,129]. It could be spec-
ulated that 1,25OH2D might be of importance in
the regeneration process of muscle. Furthermore,
reduced IGF-I levels seem to play a role in age-related
muscle degeneration. A possible interrelationship
between IGF-I levels and vitamin D levels should be
investigated [130].

IX. SUMMARY

In this chapter we have reviewed the increasing
evidence pointing to direct effects of vitamin D on
striated muscle, making striated muscle an important
target organ for vitamin D. Hypovitaminosis D myopa-
thy (HDM) is a reversible disease that can recover
completely, usually with significant improvement within
a few weeks to a month after beginning vitamin D
treatment [7,131,132]. Full restoration of severe HDM,
however, may take 6 to 12 months of treatment with
vitamin D [10]. Moreover, there is strong evidence for
the prophylactic effects of vitamin D to reduce the risk
of falls through improved muscular function and
thereby to decrease the incidence of fractures. A daily
dose of at least 800 IU (20 µg) cholecalciferol prefer-
ably in combination with 1000–1200 mg calcium
seems to be the most effective treatment. Consequently
combined vitamin D and calcium prophylaxis should
be considered to combat hip fractures in the elderly.
All patients at risk for vitamin D deficiency (i.e., lack
of sunlight exposure) should be suspected to suffer
from HDM. Those patients suspected of having HDM
should have a blood test performed for measurement of
25OHD and PTH. In severe cases of HDM, treatment

1816 HENNING GLERUP AND ERIK FINK ERIKSEN



should be initiated with a higher dose of vitamin D in
order to speed up recovery. 300,000 IU cholecalciferol
or ergocalciferol can be given either as an oral dose or
intramuscular injection. This can be given as a single
dose or repeated every month for three months. The
high dose vitamin D should be combined with a daily
supply of calcium.

In order to avoid HDM, the serum levels of 25OHD
should be kept above 50 nmol/l and PTH levels should
be suppressed to the normal range. Maintenance of
normal 25OHD levels in the elderly should have a high
priority, as hip fractures and disability carry a high cost
for society as well as for the individual patients.
Treatment of HDM results in significant improvement
in quality of life. However, vitamin D is not the solution
to every musculoskeletal problem in the aging popula-
tion. The age-related loss of muscle power (approxi-
mately 1.5% per year [32]) seems to be obligatory and
unrelated to vitamin D deficiency.

The data summarized in this review, lead to new
questions, of which the ones, we consider most impor-
tant are listed below:
1. Do muscle cells have the capacity to synthesize

1,25(OH)2D from 25OHD?
2. Is hydroxylation of 25OHD to 1,25(OH)2D neces-

sary in order to mediate its effect on muscle, or
does 25OHD have an effect of its own?

3. How do elevated PTH levels interact with vitamin D
in muscle?

4. Finally, is the uptake of 25OHD and 1,25(OH)2D in
muscle a matter of simple diffusion, or do muscle
cells possess a system for facilitated uptake of the
compounds?
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I. ROLE OF VITAMIN D IN
THE DEVELOPMENT OF
HYPERPARATHYROIDISM
IN RENAL FAILURE

The kidney is the main organ for the production
of active vitamin D, 1,25-dihydroxyvitamin D3 (1,25-
(OH)2D3) [1], a process that is catalyzed by 25-hydroxy-
vitamin D3 1alpha-hydroxylase (1α-hydroxylase) in the
proximal tubule cells [2–4]. Activity of this enzyme is
attenuated in chronic renal failure due to phosphate
load [5,6] as well as to the decreased numbers of viable
nephrons [1]. Furthermore, it has recently been shown
that fibroblast growth factor-23 (FGF-23) may sup-
press activation of vitamin D [7]. FGF-23 is a newly
discovered phosphaturic factor (see Chapters 26 and 29)
and increased serum levels have been reported in patients
with renal dysfunction [8].

In addition to the decreased production of 1,25-
(OH)2D3 in the kidney, the importance of vitamin D
deficiency has been recognized again, especially in
chronic kidney disease (CKD) stages 3 and 4 [9].
Vitamin D deficiency is reflected by decreased serum
concentrations of 25(OH)D [10]. Such decrease of
25(OH)D level may result from the loss of vitamin
D-binding protein into the urine [11] as well as malnu-
trition [12]. In addition, a decrease of megalin on the
brush border of proximal tubules has been reported
[13], which results in diminished reuptake of filtered
25(OH)D [14] (see Chapter 10).

In chronic renal failure, the secretion of parathyroid
hormone (PTH) is stimulated by several factors,
primarily hypocalcemia and reduced production
of 1,25(OH)2D3 [1]. In addition, direct stimulatory
VITAMIN D, 2ND EDITION
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action of phosphate on parathyroid has recently been
demonstrated [15–17]. Thus, secondary hyperparathy-
roidism develops almost inevitably in patients with
chronic renal failure without appropriate therapy [1].
Excess PTH accelerates bone turnover and results in a
typical bone abnormality known as osteitis fibrosa [18].

Vitamin D metabolites suppress the secretion of
PTH by correcting hypocalcemia and also by direct
action on parathyroid cells in patients of chronic renal
failure [19,20]. However, it is still difficult to suppress
PTH secretion in substantial numbers of patients by
vitamin D treatment. Such patients usually have marked
parathyroid hyperplasia [21]. Since conventional uses
of vitamin D in mild and advanced renal failure,
including 1,25(OH)2D3 pulse therapy, are discussed in
the Chapter 76 by Dusso, Brown, and Slatopolsky, we
will focus on patients with severe disease that are
refractory to medical therapy and summarize the new
therapeutic uses of vitamin D metabolites.

II. RESISTANCE TO 1,25(OH)2D AS
A CAUSE OF SEVERE SECONDARY
HYPERPARATHYROIDISM IN CHRONIC
RENAL FAILURE

A. Resistance to 1,25(OH)2D in Chronic
Renal Failure

Despite physiological plasma concentrations of
1,25(OH)2D, as well as those of calcium ion obtained by
routine treatment, there are still many patients with ele-
vated plasma PTH levels. Some of these patients respond
to supraphysiological concentration of 1,25(OH)2D3



achieved either by intravenous or oral intermittent
high doses of 1,25(OH)2D3, which is also refered to as
“1,25(OH)2D3 pulse therapy” [22–24]. These observa-
tions suggest that the resistance of parathyroid cells to
1,25(OH)2D may play a major role in the pathogenesis
of severe secondary hyperparathyroidism in chronic
renal failure [25].

Resistance to physiological concentrations of
1,25(OH)2D may develop during the early phase of
chronic renal failure. In rat models of mild renal failure,
PTH secretion, synthesis, and parathyroid cell prolifer-
ation were all enhanced even in the presence of a normal
plasma concentration of calcium and 1,25(OH)2D [26].
Hyperparathyroidism returned to normal with pharma-
cological doses of 1,25(OH)2D3 without the induction
of hypercalcemia. In these rats, 1,25(OH)2D receptor
(VDR) density in parathyroid glands, detected by
Western blot, was decreased compared to levels seen in
normal rats. Such reduction of VDR density in parathy-
roid glands also has been demonstrated in enlarged
parathyroid glands of chronic dialysis patients [27], as
well as in animal models of chronic uremia [28,29].
This abnormality, reduced VDR concentration, is cur-
rently considered the central feature responsible for 
the resistance of parathyroid glands to 1,25(OH)2D in
chronic renal failure [30].

In addition to the decreased density of VDR, several
mechanisms have been proposed (Fig. 1). Decreased
density of retinoid receptor X (RXR), which forms
heterodimers with VDR, has been suspected [31];
however, the significance of this observation still
remains unclear. Hsu and associates have been focused

on the possible inhibition of 1,25(OH)2D action by
uremic toxins [32]. They have shown that serum from
uremic patients inhibited the interaction between the
1,25(OH)2D-VDR complex and DNA [33], possibly
through the formation of a Schiff base [33]. Although
they have examined the effects of glyoxylate [35], other
uremic toxins responsible for this inhibition still remain
to be identified [36]. In addition, calreticulin has been
shown to inhibit the binding of the 1,25(OH)2D-VDR
complex to the vitamin D responsive element (VDRE)
in the PTH gene promoter [37]. Hypocalcemia was
found to induce increased concentrations of calreticulin
exclusively in parathyroid glands. It is possible that this
molecule plays some role in the regulation of VDR
function by extracellular calcium [38,39]. Decreased
action of 1,25(OH)2D due to these mechanisms finally
results in disturbed up-regulation of VDR, which fur-
ther increases resistance to 1,25(OH)2D in chronic renal
failure (Fig. 1) [40–42]. Such a vicious  cycle may be
prevented by early vitamin D treatment as suggested by
the animal models [43].

B. Advantages and Limitations
of Intravenous Calcitriol Therapy

Considering that these abnormalities cause vitamin D
resistance, it is quite reasonable that supraphysiological
concentrations of 1,25(OH)2D have been shown effective
in suppressing PTH secretion in chronic dialysis patients
resistant to conventional oral calcitriol [22–24]. Since the
peak concentration of 1,25(OH)2D is more important
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for the suppression of PTH secretion than the total dose
of calcitriol, as shown in dialysis patients [22] and in
experimental animals [44], higher doses of calcitriol
theoretically should be more effective. However, high
doses of calcitriol often cause hypercalcemia and
hyperphosphatemia, resulting in reduction or discon-
centration of therapy. High Ca × Pi product leads to
metastatic calcification including within blood vessels,
which may result in a higher mortality risk [45]. This
has been the main reason why less calcemic vitamin D
analogs, such as 19-nor-1,25(OH)2D2 [46] and 22-oxa-
1,25(OH)2D3 [47], have been developed (see Section VIII
of this book). Even with these less calcemic vitamin D
analogs, PTH secretion is still difficult to control in
some patients.

C. Parathyroid Size as a Marker for
the Prognosis of Vitamin D Therapy

In order to avoid unnecessary vitamin D treatment
and metastatic calcification, it is certainly necessary to
have a good predictor of the prognosis of vitamin D ther-
apy for parathyroid suppression in these patients.
Although recent data suggest that serum FGF-23 levels
may be a marker for the future prognosis of hyper-
parathyroidism [48], parathyroid gland size assessed
by ultrasonography is the most simple and useful marker
at this time.

Marked parathyroid gland hyperplasia is a unique
feature of secondary hyperparathyroidism in chronic
dialysis patients [49]. Although the size of each of the
four glands is usually different, even in the same patient,
it has been recognized by experience that the size of the
largest gland roughly correlates with the length and
severity of uremia and with the degree of prevailing
plasma and stimulated peak PTH levels [50,51]. The size
also correlates with the degree of abnormal control of
PTH secretion [52,53], which may be normalized by
calcitriol pulse therapy [54].

Clinical observations of dialysis patients suggest
that the size of the largest gland is the critical marker
for the long-term prognosis of vitamin D therapy [55].
If the largest gland is larger than 1 cm in diameter or
about 0.5 cm3 in volume, it is usually difficult to sup-
press PTH secretion by calcitriol pulse therapy. In such
patients, secondary hyperparathyroidism always persists
or relapses even if it initially responded to calcitriol
pulse therapy. By contrast, patients with only smaller
glands usually respond well to calcitriol pulse therapy,
and parathyroid gland function can be controlled then
with oral active vitamin D sterols. Thus, the size of the
parathyroid gland may have more relevance than
plasma PTH levels in assessment of calcitriol pulse

therapy [37]. Furthermore, Tominaga et al. demon-
strated in patients treated by surgical parathyroidec-
tomy that autoimplantation of tissue fragments from
glands heavier than 0.5 g resulted in frequent relapse
of hyperparathyroidism [56]. Thus, the critical size for
the management strategy for hyperparathyroidism in
chronic dialysis patients seems to be less than 0.5 cm3

in volume.
The correlation between the gland size and the

resistance to calcitriol can be explained by the degree
of decrease of VDR density. VDR density is inversely
correlated with the weight of enlarged glands [57]. Large
parathyroid glands are usually composed of nodular
hyperplasia, a more advanced type of pathology than
diffuse hyperplasia seen in small glands [58]. It has
been reported that cells in nodular hyperplasia glands
have higher proliferative potentials [59,60,62] and
more abnormal regulation of PTH secretion [63] than
cells in diffuse hyperplasia glands. We and others have
clearly shown that the VDR number was decreased
more in nodular hyperplasia than in diffuse hyperplasia
[57,64]. Since 90% of the glands heavier than 0.5 g
were composed of nodular hyperplasia as shown by
Tominaga and Takagi [61], the difference in the response
to calcitriol that is dependent upon gland size can be
explained by the difference in the type of hyperplasia in
the larger glands.

In nodular hyperplasia, decreased density of the
calcium-sensing receptor also has been demonstrated
[65,66]. Although it is still controversial whether this
decrease is the cause or the result of secondary hyper-
parathyroidism, a direct correlation between cell prolifer-
ation and decrease of calcium-sensing receptor has been
suggested [67,68]. Thus, glands with nodular hyperplasia
are less responsive to the suppressive effect of ambient
calcium. This may partially explain the empirical finding
of high PTH levels in the presence of hypercalcemia in
patients with nodular hyperplasia. The progression of
parathyroid hyperplasia is summarized in Fig. 2.

It is of note that some enlarged glands smaller than
0.5 cm3 may be composed of nodular hyperplasia [61].
Nodule formation may be recognized by the shape of the
glands detected by the latest models of ultrasonography
devices [70]. Furthermore, Onoda et al. recently reported
that positive blood supply detected inside the gland was
highly suggestive of nodular hyperplasia [71].

III. MANAGEMENT OF SEVERE
HYPERPARATHYROIDISM REFRACTORY
TO MEDICAL THERAPY

Prevention of parathyroid hyperplasia from the early
phase of chronic renal failure is the most important
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strategy for the management of secondary hyper-
parathyroidism in chronic renal failure. This can be
achieved by dietary phosphate restriction and the early
use of phosphate binders and cautious use of active
vitamin D sterols as described in Chapter 76. Recent
data suggest that the direct effects of phosphate on
parathyroid cells is especially important in the early
phase of chronic renal failure [72].

A. Selective Percutaneous Ethanol
Injection Therapy (PEIT)

Although the introduction of new vitamin D analogs
and calcimimetics may be promising in the treatment of
secondary hyperparathyroidism, what can be done for
patients with nodular hyperplasia? Do they have any
choice other than surgical parathyroidectomy [73,74].

The ongoing discussion indicates that small glands
composed of diffuse hyperplasia should still be respon-
sive to calcitriol even in such patients. However, 
what about the patients that have already progressed to
nodular hyperplasia?

For patients with nodular hyperplasia, two new
techniques have been established. The first technique
is the selective percutaneous ethanol injection therapy
(PEIT) [75–77]. The second technique is direct vita-
min D injection therapy (see below).

In PEIT, glands with nodular hyperplasia are “selec-
tively” destroyed by ethanol injection under ultrasono-
graphic guidance. Other glands with diffuse
hyperplasia are then controlled by medical therapy
(Fig. 3). Recently, this technique has become more
powerful and safer than ever and has become widely
used, especially in Japan. According to the guideline
by Japanese Society for Parathyroid Intervention [78],
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patients having one or two glands with nodular hyperpla-
sia are the best candidates for PEIT. After the initial
ethanol injection, PTH levels and recurrence should be
monitored carefully. More importantly, after the success-
ful destruction of nodular hyperplasia, residual glands
with diffuse hyperplasia should be managed by appropri-
ate medical therapy, including dietary phosphorus restric-
tion. Thus, good compliance of the patients to medical
therapy and regular check-ups after PEIT is essential.

In the largest study by Kakuta et al., 46 patients
were treated by selective PEIT on an outpatient basis
followed by appropriate medical therapy. PTH levels
in 80% of the patients remained within the target range
at one year after initial treatment [79]. Long-term
follow-up (three years) after PEIT has been also
reported by this group [80].

Failure of PTH suppression despite successful abla-
tion of glands with nodular hyperplasia suggests the
existence of another gland containing nodular hyperplasia
beyond the reach of ultrasonography [81]. If ectopic
glands are recognized before the procedure is per-
formed, initial surgical parathyroidectomy is indicated.
Thus, it may be reasonable to search for ectopic glands

before PEIT in patients with more than three glands of
critical size.

Recurrent nerve palsy due to leakage of ehanol is
one of the most important complications of PEIT [77].
It is also suspected that adhesions in the tissue sur-
rounding the parathyroids may be caused by leakage of
ethanol. This could be a major problem if surgical
parathyroidectomy will be needed in the future. With
the routine use of color Doppler flow mapping by
ultrasonography, the volume of ethanol used for PEIT
has become minimal, leading to the lower rate of such
complications [79]. Nevertheless, skilled operators 
and appropriate equipments are certainly required for
successful and safe PEIT [78].

B. Direct Vitamin D Injection Therapy

The second technique for treating nodular hyperpla-
sia is direct calcitriol injection therapy under ultra-
sonographic guidance (PCIT) [82]. In this therapy,
very high local concentration of 1,25(OH)2D3 or other
vitamin D metabolites is achieved exclusively in
injected parathyroid glands. As already reported, direct
calcitriol injection therapy not only suppressed PTH
secretion, but also restored the responsiveness to
medical therapy. Such effects have been confirmed by
other studies with different protocols [83–85].
Furthermore, direct injections of 22-oxacalcitriol have
also been tried with favorable results [86].

In contrast to PEIT, the risk of recurrent nerve palsy
is extremely low with PCIT. However, a recent report
suggested that direct injection of 22-oxacalcitriol
might evoke inflammation, resulting in adhesions of
the surrounding tissue [87]. The use of vitamin
D analogs is promising and such risks should be avoid-
able with improvements in technique. Future develop-
ment may allow direct injection of new calcimimetics
and even adenovirus-mediated gene transfer to treat
parathyroid hyperplasia, as has been shown recently in
animal models [88].

C. Regression of Parathyroid Hyperplasia:
Is It Really Possible?

The cell cycle of parathyroid cells is usually very
slow, even in the hyperplastic glands [89]. Although
prevention of parathyroid hyperplasia by several ther-
apeutic modalities has been demonstrated in rat mod-
els of chronic kidney disease [90], suppression of PTH
secretion may not lead to the complete normalization of
parathyroid cell function including proliferation site in
patients with secondary hyperparathyroidism [91,92].
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Thus, it is still an unsettled issue whether hyperplastic
parathyroid glands do regress after proper medical
therapy or after kidney transplantation.

Regression of parathyroid hyperplasia has been
reported in chronic dialysis patients treated by oral cal-
citriol pulse therapy [93–95], although controversial
data have been also reported [96]. Such a regression
was observed not only in cases with successful PTH
suppression, but also in small glands even in cases
without significant suppression of PTH [55,97]. Thus,
in our opinion it is reasonable to conclude that glands
with diffuse hyperplasia regress after effective medical
therapy. In contrast, as discussed above, glands with
nodular hyperplasia do not regress except for a few
cases in which spontaneous apoplexy of the gland was
suspected [98,99].

Due to the lack of established parathyroid cell lines
for in vitro studies, mechanisms of regression have not
yet been satisfactorily elucidated [100]. In order to
achieve regression of hyperplastic glands, suppression
of cell proliferation may not be sufficient. Negative
cell balance by increased apoptosis may be needed.
However, in rats, it has been very hard to demonstrate
the apoptosis of parathyroid cells, which takes place 
in a limited number of cells during cell turnover
[101–104]. Moreover, interpretation of apoptotic cells
demonstrated in surgically removed parathyroid glands
in dialysis patients has been controversial [100].

In a 1977 report by Henry et al. [105], reduction of
parathyroid cell number was clearly demonstrated in
three-month-old vitamin D–deficient chickens treated
with vitamin D replacement. In contrast, 1,25(OH)2D3

treatment suppressed parathyroid cell proliferation, but
did not reverse hyperplasia in experimental uremia, as
demonstrated by Szabo et al. [106]. In recent animal
studies by Lewin et al. [107,108], hyperparathyroidism
induced by long-term uremia returned to normal follow-
ing kidney transplantation. However, parathyroid hyper-
plasia was persistent. Such a suppression of PTH
secretion with persistent hyperplasia has also been
demonstrated in rat models of secondary hyperparathy-
roidism induced by high phosphorus diet, by switching
to low phosphorus diet. In these animal models, rever-
sal of reduced VDR or calcium-sensing receptor has
not been confirmed at least in the short term.

As discussed above, it has been suggested recently
that regression of nodular hyperplasia may be induced by
direct vitamin D injection therapy, originally performed
with calcitriol [82]. By injecting directly into enlarged
glands under ultrasonography, very high local concentra-
tion of vitamin D or analog can be achieved transiently.
Shiizaki et al. recently reported that direct injection
of 22-oxa-calcitriol solution into enlarged glands in
patients leads to the regression of hyperplasia [84].

By repeated parathyroid biopsy before and after the
therapy, they clearly demonstrated the induction of
apoptosis of parathyroid cells in the injected glands.
They also suggested that such a regression was associ-
ated with up-regulation of VDR and the calcium-sensing
receptor. These data suggest that direct vitamin D
injection therapy not only induces apoptosis of parathy-
roid cells, but also restores the responsiveness of resid-
ual parathyroid cells to medical therapy, leading to
normalization of parathyroid hyperplasia. It may be
possible that such specific effects of vitamin D on
parathyroid cells may also be achieved by oral or intra-
venous preparations, if vitamin D analogs with these
specific actions can be designed in the future.

It is also of note that increased 25-hydroxyvitamin D3

1α-hydroxylase and reduced 25-hydroxyvitamin D3

24-hydroxylase expression have been reported in
parathyroid tumors [109]. Thus, parathyroid is not only
a target organ of vitamin D, but it also metabolizes vita-
min D. Since parathyroid glands possess 1α-hydroxy-
lase, it may become possible to develop new vitamin D
metabolites that use this system to be activated only in
parathyroid.

IV. FUTURE ROLES OF VITAMIN D
ANALOGS IN CHRONIC RENAL 
FAILURE

A. Design of Vitamin D Analogs with 
Specific Actions on Specific Tissues 
in Chronic Renal Failure

The parathyroid glands are not the only target organ
of vitamin D therapy in patients with chronic renal
failure. The skin and the immune system are other
examples; however, the role of vitamin D treatment on
these systems, as well as other organs, has not been
fully clarified yet [110,111]. A recent report suggests
that paricalcitol treatment leads to better survival than
calcitriol treatment in chronic dialysis patients [112]. It
is still unclear whether such a difference is due to the
less calcemic effect of paricalcitol or to its effects on
other organ systems.

Bone is a representative classic target organ of
vitamin D. Thus, different effects of 22-oxacalcitriol
versus calcitriol on bone turnover have been noted
in animal models of chronic renal failure [113]
(see Chapter 86). As recently suggested, the different
effects of vitamin D analogs on bone, seen in in vitro
and in vivo experiments, might be clues that help in
the future elucidation of the mechanism for the differ-
ential actions of analogs in various tissues [114].
22-oxacalcitriol was originally developed as an analog
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with potent activity on the differentiation of leukemic
cell lines [115]. Such an activity has also been exam-
ined with paricalcitol [116]. Recently, it has been
demonstrated that different vitamin D analogs utilize
specific cofactors for target gene regulation [117].
Different cofactors bind to different genes, evoking
different actions on the same cell. Thus, it is expected
that design of vitamin D analogs with differential actions
in specific organs will become possible [118]. For exam-
ple, it may be possible to design analogs that specifically
induce apoptosis of parathyroid cells as well as less
calcemic analogs.

B. Possible Treatment of Chronic Kidney
Disease by Vitamin D Analogs

The kidney is not only the site of active vitamin D
production, but also is its target organ. As intensively
discussed in several previous chapters, vitamin D
metabolites modulate the activity of the enzymes
involved in vitamin D synthesis and degradation.
Calcium-binding proteins [119] are also induced by
vitamin D in the distal tubules of the kidney. VDRs have
been identified in various parts of the kidney and no
doubt are regulated by vitamin D metabolites [120].
Inhibition of renal cell proliferation by vitamin D was
initially demonstrated in renal cell carcinoma lines [121].
It has also been shown that 1,25(OH)2D3 diminished
3H-thymidine incorporation, cell counts, and TGF-β
secretion into the supernatant of cultured proximal
tubular cell lines [122–124] and in cultured human
mesangial cells [125]. Regulation of mesangial cell
smooth muscle phenotype has also been suggested [126].

In vivo, 1,25(OH)2D3 reduced renal weight, protein
content, DNA content, and the number of mitoses in the
remnant kidney with compensatory hypertrophy after
uninephrectomy [127]. On the contrary, 1,25(OH)2D3

may induce type IV collagen synthesis, possibly through
up-regulation of TGF-β type II receptor [126] and up-
regulation of protein-1 [128].

It may be possible that vitamin D ameliorates
glomerular injury seen in chronic kidney disease,
although the effects may depend on the phase of renal
injury. It has recently been shown that 1,25(OH)2D3

inhibited progressive glomerulosclerosis in subtotally
nephrectomized rats [129] and reduced proteinuria,
glomerular hyper-cellularity and inflammatory infiltra-
tion in anti-Thy-1.1 nephritis [130]. Similar suppres-
sive effects have been also demonstrated with retinoic
acids [131,132].

These studies suggest the possibility that vitamin D
may alter the rate of progression of CKD. In contrast,
there has been a concern that oral vitamin D treatment

in CKD patients may increase the risk of accelerating
the progression of renal dysfunction by increasing 
urinary calcium excretion. In this respect, the less-
calcemic vitamin D analogs may be more suitable for
this purpose [133].

22-oxa-calcitriol is one such less-calcemic vitamin D
compound used for the treatment of severe secondary
hyperparathyroidism in chronic dialysis patients [134],
as extensively reviewed in Chapter 86. It has recently
been shown that 22-oxa-calcitriol also effectively ame-
liorated glomerular sclerosis in two rat models of
chronic kidney disease without affecting calcium and
phosphorus levels [135,136]. Although further studies
are needed, a vitamin D analog with such properties may
be a promising agent for the treatment of chronic kidney
disease in the near future.
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I. INTRODUCTION

The prostate is a gland surrounding the male urethra
below the neck of the bladder and producing the pro-
static fluid, a secretion which contributes 30% to the
total ejaculate. The prostatic fluid is rich in fibrinolytic
enzymes, such as prostatic-specific antigen (PSA), acid
phosphatase, citric acid, and zinc. In humans, the
prostate gland is composed of 40 to 50 ducts distributed
essentially in three distinct zones: peripheral, central,
and transitional or periurethral. While cell transforma-
tion in the peripheral zone gives rise to prostate cancer,
cell growth in the periurethral zone leads to the most
common age-related disease of the male: benign pro-
static hyperplasia (BPH). The prostate weight is only a
few grams at birth, and it increases during puberty,
reaching approximately 20 g in the young adult. In con-
trast to the pubertal growth phase, which involves the
entire gland, during the fifth decade of life, in the major-
ity of men, there is a second growth phase selectively
involving the periurethral zone leading to BPH [1]. The
prevalence of BPH increases with age so that by age 
80, about 90% of men have histological evidence of 
BPH [1]. In a subset of elderly men (27–35%), BPH can
cause lower urinary tract symptoms (LUTS), which may
require medical or surgical treatment [2] due to the com-
pression by the enlarged prostate of the prostatic urethra,
which decreases bladder outflow. In the earliest stages,
this obstruction is compensated by an increased activity
of the bladder detrusor muscular system but eventually
complete voiding of the bladder is prevented, due to the
slackening of the neck musculature. Urinary obstruction
VITAMIN D, 2ND EDITION
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and even renal insufficiency might follow. This may lead
to emergency surgery for acute urinary retention with 
an increased risk of morbidity and even death when 
compared to elective surgery [3].

II. PATHOGENESIS OF BPH

Periurethral prostate overgrowth involves both epithe-
lial and stromal components, including both fibroblasts
and smooth muscle cells, in various combinations. One
of the earliest events in BPH development is the reduction
of the epithelium/stroma ratio, most probably due to an
imbalance between growth and death programs. Indeed,
in the hyperplastic prostate, the epithelium regularly
undergoes apoptosis, whereas stromal cells escape it [4],
with a consequent increase in the stromal volume [5]. In
addition, stromal growth factors (GFs) induce epithe-
lial overgrowth and glandular hyperplasia [6,7]. All
these events are clearly androgen-dependent, as shown
by the observation that BPH does not develop in hypo-
gonadal men, and that either surgical or pharmacolog-
ical castration results in a decrease gland size [8–10].
However, BPH develops mainly in older men, when
circulating testosterone, and in particular free testos-
terone, is progressively decreasing. Therefore, it is possi-
ble that sensitivity to androgens, rather than circulating
androgen levels, are involved in BPH pathogenesis. A
higher transcriptional activity of the androgen receptor
(AR) due to a decreased number of CAG repeats in exon
1 has been reported in the majority [11–13], although
not in all studies [14,15]. Interestingly, in hypogonadal



patients the effect of androgen substitution on prostate
growth was inversely related to the extent of CAG
residues [16]. In addition, a recent study has indicated
a decreased expression of the AR co-repressor DAX-1
in BPH [17]. These studies support the view that AR
activity is up-regulated in the prostate of BPH patients.
Therefore, blocking AR activity represents a promis-
ing approach in the treatment of BPH. This could be
achieved by reducing androgen levels, for example,
blocking their formation with GnRH analogs or by
antagonizing androgen activity at the receptor level
using AR antagonists. Although both these strategies
might be indeed effective, in clinical practice they are
unacceptable because of the major side effects caused
by complete androgen ablation in otherwise healthy
individuals. Wilson 1972 [18], first hypothesized that
the main androgen inducing prostate hyperplasia was
not testosterone (T), but its highly biologically active
metabolite dihydrotestosterone (DHT), which is formed
locally by two 5α-reducing iso-enzymes (5α-reductase
type 1 and 2, the latter being predominant, see [19] for
review). Interestingly, intra-prostatic DHT content is
not decreased as a function of age [20–22]. According
to Wilson’s original hypothesis, blocking DHT forma-
tion with a type 2 selective (finasteride) or with a dual
(dutasteride) inhibitor of 5α-reductase isoforms is,
indeed, an effective treatment for BPH [23,24].
However, prostate size reduction obtained with this
strategy is relatively limited (about 25%). Also some
men experience sexual side effects related to partial
androgen deficiency (decreased libido and impotence)
that are not well tolerated, in particular in the ageing
male [3,25]. It is possible that the limited clinical
response to 5α-reductase inhibitors is due to a compen-
satory increase in intra-prostatic growth factor (GF)
receptors, which follows androgen deprivation [26,27].
Therefore, an alternative strategy to reduce age-related
prostate overgrowth is to decrease the activity of
androgen-induced prostatic GFs, which are considered
to mediate, at least partially, the proliferative activity
of sex steroids in the gland [7,28,29]. It is interesting to
note that the prostate gland is one of the few androgen
targets retaining a proliferative responsiveness to andro-
gens in adulthood. Therefore disrupting androgen-
induced, intra-prostatic GF signaling is an attractive
option to obtain a selective, and sexual side-effect free,
therapy for BPH.

III. EFFECTS OF ANDROGENS AND
GROWTH FACTORS ON HUMAN 
BPH CELLS

In the human prostate, the AR is expressed in both the
epithelial and the stromal compartments and regulates

mutual interactions between the two compartments
(reviewed in [30]). However, as discussed above, stro-
mal rather than epithelial cells are thought to be pri-
marily involved in the pathogenesis of BPH. As shown
in Fig. 1, BPH-derived stromal cells (BPH cells) express
the AR gene and protein, with a high affinity for the 
ligand (Kd = 72 ± 34 pM), as well as both isoforms of
5α-reductase [31]. In addition, they respond to andro-
gens with an increased growth (EC50 = 380 ± 200 pM,
[31]). An increase in BPH cell proliferation was also
obtained with addition of specific GFs, such as epider-
mal growth factor (EGF [32]), keratinocyte-GF (KGF
[32,33]), and insulin-like growth factor-I (IGF-I [34]).
Data in Fig. 2 show the maximal stimulatory activity
of KGF (10 ng/ml), Des (1–3) IGF-I (an IGF-I analog
which does not bind to binding proteins, 10 ng/ml)
and T (10 nM) on BPH cell proliferation. KGF- and
Des [1–3] IGF-I-induced proliferation was com-
pletely blocked only by specific antibodies, but not by
unrelated antibodies or immunoglobulins (Fig. 2).
Conversely, testosterone-induced cell growth was com-
pletely abolished not only by an AR antagonist (cypro-
terone acetate) or by a type 2 5α-reductase inhibitor
(finasteride), but also by antibodies against the recep-
tors for KGF (KGFR) and IGF-I (IGFR1) (Fig. 2).
This indicates that T-induced proliferative activity in
BPH cells is at least partially mediated by KGFR and
IGFR1. This finding is consistent with data from organ
cultures of neonatal rat ventral prostates, in which
exogenous administration of KGF completely replaces
the requirement of T for prostate growth and branching
morphogenesis [35]. In addition, KGF has been also
shown to replace androgen in eliciting growth and 
differentiation of seminal vesicles [36]. Hence, KGF,
the predominant fibroblast GF (FGF) in human
prostate [37], is considered one of the main prostatic
andromedins, that is mediators of androgen-induced
growth [38]. Also, the IGF system has been implicated
in the pathogenesis of BPH. IGFR1 and IGF-II expres-
sion were higher in the periurethral zone of the human
prostate than in other zones, and IGF-II levels were
strictly correlated with the intra-prostatic androgen
level [39]. Patients with the highest circulating levels
of IGF-I have an elevated risk of BPH [40] and trans-
genic mice overexpressing IGF-I protein in the
prostate show sign of hyperplasia in the ventral lobe,
the most androgen-dependent zone [41].

IV. VITAMIN D RECEPTOR EXPRESSION
IN PROSTATE CELLS

The aforementioned experimental and clinical stud-
ies indicate that an ideal medical treatment for BPH
might be an agent able to disrupt the intra-prostatic
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FIGURE 1 Expression of AR, 5α-reductase and VDR in human BPH cells. Panel A: homologous competition curve
for [3H]R1881 binding. R1881 binds with high affinity (Kd = 72 ± 34 pM) and low capacity (Bmax = 2.64 ± 0.5 fM)
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RNA of BPH cells, prostate tissue, CHO 1827 (transfected with 5α-reductase 1, 5α-R1, gene) or CHO 1829 (trans-
fected with 5α-reductase 2, 5α-R2 gene), CHO cells, human fetal penile smooth muscle cells (hfPSMC), using spe-
cific primers for 5α-R1 (upper panel), 5α-R2 (second panel), VDR (third panel) and GAPDH (bottom panel). CHO
1827 or 1829, hfPSMC and human prostate were used as positive controls for 5α-R1, 5α-R2 and AR. GAPDH
mRNA amplification was performed to verify the integrity and loading of the extracted total RNA. MW, molecular
weight markers; NC, negative control. The blots are representative of three separate experiments.
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FIGURE 2 Antiproliferative effect of BXL-353 on BPH cell growth induced by GFs or testosterone (T).
Incubation for 48 h with KGF (10 ng/ml), Des [1–3] IGF-I (10 ng/ml) or T (10 nM) significantly induced BPH
cell proliferation. Anti-androgens such as the 5α-R2 inhibitor, finasteride (F, 1 nM), or the AR antagonist cypro-
terone acetate (Cyp, 100 nM) completely reverted T-induced stimulation of BPH cell growth, but they did not
exert any effect on basal cell growth. Specific antibodies against KGFR (Anti-KGFR, 1 µg/ml) and IGFR1 (Anti-
IGFR1, 1 µg/ml) blocked cell growth stimulated by their cognate GFs. T-induced cell proliferation was blunted
by both types of anti-GF receptor antibodies. Immunoglobulin controls (IgG 1 µg/ml) failed to block either GF-
or T-stimulated proliferation. BXL-353 (10 nM) was able to block BPH cell growth both in basal condition and
in the presence of T or GFs. Results are expressed as percent increase (mean ± SEM) over their relative controls
in 4 different experiments performed in quadruplicate (* P< 0.01 vs control; ° P < 0.01 vs GF- or T- treated cells
by one-way ANOVA and paired or unpaired Student’s t tests). The data are derived from Crescioli et al., 2003.



cross-talk between AR and GFs but devoid of anti-
androgenic properties. Calcitriol analogs might com-
ply with such criteria. The strict inter-relationships
between vitamin D and prostate have been extensively
described. Vitamin D deficiency has been proposed to
be a risk factor for prostate cancer [42,43], because
prostate cancer mortality in the USA increases as the
availability of ultraviolet light exposure, and therefore
of vitamin D formation, decreases [44] (see Chapter 90).
Polymorphisms in the VDR gene have also been associ-
ated with increased risk of prostate cancer in some stud-
ies [45–47] (see Chapter 68). Malignant prostate cells
express the VDR, and treatments with calcitriol, or less-
hypercalcemic analogs, can inhibit prostate cancer pro-
liferation and invasiveness (see Chapter 94 and ref.
[48,49] for review). Interestingly, also epithelial and stro-
mal cells of both human [50,51] (see also Figs. 1 and 2)
and rat [51] normal prostate cells express the VDR, and
addition of 1,25 (OH)2D3 inhibits cell growth [50].

V. ANTIPROLIFERATIVE EFFECTS OF
BXL-353 ON HUMAN BPH CELLS

We have extensively studied the antiproliferative
effects of VDR ligands, and in particular of 1,25-dihy-
droxy-16-ene-23-yne D3 (BXL-353 or analog V), a
compound 30-fold less calcemic than calcitriol, on
human stromal prostate cells (BPH cells). BPH cells
were obtained from prostate tissues derived from
patients, who underwent suprapubic adenomectomy
for BPH and did not receive any pharmacological treat-
ment in the three months preceding surgery [33]. BPH
cells showed positive staining for smooth-muscle actin,
vimentin, and desmin, suggesting fibromuscular mor-
phological features. Conversely, they were negative for
epithelial and endothelial markers such as cytokeratin
and factor VIII [33]. As shown in Fig. 2 BXL-353
completely inhibited GF- or T-induced BPH cell prolif-
eration and also decreased the growth of unstimulated
cells [31,33,34]. To better understand the antiprolifera-
tive effect of BXL-353, we have studied its effects on
the cell cycle distribution of partially synchronized
BPH cells after a 24 h culture with medium or KGF
(10 ng/ml). As shown in Fig. 3, after serum starvation,
more than 75% of the cells were in G0/G1-early S phase,
as indicated by fluorescence emission of propidium
iodide-stained nuclei. Treatment with KGF allowed the
cells to progress through the cell cycle with a statisti-
cally significant decrease in the proportion of cells
accumulated in G0/G1-early S and an increase in cells
traversing the G2/M phase. The simultaneous addition
of BXL-353 completely antagonized the KGF-induced
effects on cell-cycle progression.

In BPH cells GFs and steroids not only stimulated
DNA synthesis and cell proliferation but also pro-
longed cell survival, via induction of the anti-apoptotic
protein Bcl-2 [31,33,34] (see also Fig. 4). Members of
the Bcl-2 family are essential mediators of cell survival
and apoptosis, and include both anti- and pro-apoptotic
intracellular proteins residing at the mitochondrial
outer membrane [52–55]. Their classification is based
on the presence or absence of Bcl-2 homology (BH)
domains: BH1, BH2, BH3, and BH4 [56]. In particu-
lar, Bcl-2 and Bcl-XL members, both containing all
four BH domains, inhibit apoptosis and promote cell
survival [57]. Bcl-2 activity, derived by integrating sig-
nals from survival and death stimuli, seems to be regu-
lated by several different mechanisms, like homo- and
heterodimerization with other family members, or post-
translational modifications such as phosphorylation and
proteolysis [52,58]. BXL-353 not only dramatically
reduced GF- or T-induced Bcl-2 overexpression and sur-
vival, but also in the presence of these anti-apoptotic
factors was able to stimulate a sustained death program
(Fig. 4). Hence, in BPH cells, BXL-353 induced a
decrease in the progression through the cell cycle and an
increase in the rate of programmed cell death. Similar
results were observed with calcitriol in breast cancer
cells [59], in the androgen-dependent prostate cancer
cell line LNCaP [60,61] as well as in metastatic
Dunning rat prostate carcinoma [62]. Interestingly, in
LNCaP cells, overexpression of Bcl-2 completely
blocked calcitriol-induced apoptosis but only partially
affected cell cycle arrest [61], indicating that partially
independent pathways mediate the effects of calcitriol
on cell proliferation and cell death.

The inhibitory effect of BXL-353 on prostate growth
and survival is at least partially explained by the inhibi-
tion of GF-induced receptor activation. We have found
that a rapid incubation of both benign [33] and malig-
nant [63] prostate cells with BXL-353 dramatically
reduces agonist-induced KGF-R auto-phosphorylation,
one of the earliest event of KGF signaling. Because this
effect was rapid, induced in a few minutes, and accom-
panied by an increase in intracellular calcium con-
centrations [33], we speculated the involvement of a
nontranscriptional mechanism which, in agreement with
recent results in chick myoblast [64], might involve the
same VDR translocated from the nucleus to the micro-
somal fraction. Other studies have shown that rapid
effects of calcitriol are mediated by a binding protein
different from the VDR [65–68].

It has also been shown [69] that the VDR, upon 
ligand binding, physically interacts with the catalytic
subunit of protein phosphatases PP1 and PP2Ac,
thereby promoting their enzymatic activities with the
consequent inactivation of p70S6k, a kinase essential 
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in G0/G1 transition. VDR ligands not only induced a
prompt decrease in phosphorylated KGFR [33,63], but
also in phospho-Erk and phospho-Akt [70,71]. Hence, it
is possible that calcitriol and related analogs might acti-
vate the catalytic subunit of distinct families of phos-
phatases, leading to antiproliferative effects by targeting
GF signaling. Interestingly, in the human epidermoid
A431 cells, overexpressing an autocrine growth loop for
EGF, calcitriol not only induced a rapid alteration of
EGFR auto-phosphorylation (as previously observed
by us on KGFR), but also impaired EGFR membrane
trafficking and signaling via the classic VDR-dependent
mechanism [72]. In conclusion, it is possible that
genomic (nuclear VDR-dependent) as well as rapid
or nongenomic (cytoplasmic VDR-dependent?) mech-
anisms simultaneously contribute to the growth-
suppressing activity of VDR ligands on prostate cells.

VI. INHIBITION OF IN VIVO PROSTATE
GROWTH BY BXL-353

To investigate whether calcitriol analogs might 
represent a new opportunity to decrease prostrate cell

overgrowth and, therefore, to treat BPH, we carried out a
series of studies using the rat as an experimental model.
Taking advantage of the high sensitivity to androgens of
the ventral prostate, castrated rats were supplemented
with T with or without increasing doses of BXL-353 for
various time periods [31]. Changes in ventral prostate
volume and morphology, along with measurements of
calcemia and hormonal values were studied. BXL-353
has a maximum tolerated dose of 30 µg/Kg, and at any
dose tested never caused hypercalcemia. One week
treatment with BXL-353 was sufficient to decrease
significantly and dose-dependently ventral prostate
weight, with an IC50 = 1.5 ± 1 µg/Kg (Fig. 5, panel A).
Similar results were obtained with a two-week treat-
ment of BXL-353 (Fig. 5, panel B). A 30% reduction
of ventral prostate weight was induced by one month
treatment with BXL-353 to intact adult rats (Fig. 5,
panel C). It is interesting to note that prostate weight
reduction induced by BXL-353 (∼50% decrease) is
similar to that obtained in similar experimental models
with 10 mg/Kg finasteride [31].

Because we observed that human BPH stromal cells
underwent apoptosis even after short-term in vitro
exposure to BXL-353, we investigated the fate of rat
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prostate cells after sub-acute (7–14 days, castrated
rats) or prolonged (1 month, intact rats) treatment 
with the analog. By using terminal deoxynucleotidyl
transferase (TdT) mediated dUTP nick end-labeling
(TUNEL), we observed the typical hallmark of nuclear
fragmentation in both the epithelial and stromal cells of
the BXL-353-treated prostate in all the experimental
protocols studied [31]. In addition, we found that BXL-
353 treatments induced a dose- and time-dependent
up-regulation of clusterin gene and protein. Clusterin
(CLU), or testosterone-repressed message 2 (TRPM-2),
is an ubiquitous, puzzling protein expressed also in the
rat prostate [73–75], which is down-regulated by
androgens and up-regulated by growth arrest and cell

death (see in [76]). CLU has different intracellular and
extracellular functions. As an extracellular, secretory
glycoprotein, it has a chaperone-like role, binding a
wide range of unrelated molecules and probably clear-
ing cellular debris. Conversely, the intracellular ∼49 kDa
protein, after appropriate stimuli, is transported from the
cytoplasm to the nucleus, where it binds DNA helicases,
as Ku70/Ku86, thereby reducing DNA repair and
allowing cell death [77]. Hence, CLU is generally con-
sidered an androgen-regulated, pro-apoptotic protein.
We confirmed that in the rat prostate, CLU expression
was increased by castration and finasteride adminis-
tration [73,75], and we found that BXL-353 induced 
a sustained increase in CLU gene and protein 
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expression [31]. Interestingly, CLU-positive cells were
more apparent in the glands of BXL-353 treated rats
showing the more pronounced features of involution
and atrophy.

In conclusion, studies in the rat strongly support
findings in human BPH cells: BXL-353, similar to finas-
teride, counteracts the growth promoting effect of T, by
inducing growth cell arrest and apoptosis. However,
BXL-353, at variance with finasteride, is not an anti-
androgen. It does not bind to the AR, as demonstrated by
competition studies using the synthetic androgen [3H]
R1881on BPH homogenates, and it does not inhibit
5α-reductase activity, as shown by the failure to inter-
fere with DHT formation in CHO cells transfected
with type 1 or type 2 5α-reductase iso-enzymes [31]. In
addition, BXL-353 did not affect the gonadal or pitu-
itary secretion of testosterone or gonadotrophin [31].
Hence it should act downstream of the AR receptor 
ligand interaction. The activated AR is a multiple phos-
phorylated protein and some of its phosphorylation
sites (as Ser 650) are required for full transcriptional
activity (see ref. [78]). Hence, it is possible that BXL-
353 might activate the catalytic subunit of distinct fam-
ilies of phosphatases, therefore exerting its
antiproliferative effects acting on AR-dependent signal-
ing. Alternatively, BXL-353 may disrupt androgen-
dependent GF-mediated survival pathways, thus
hampering T-induced BPH cell growth.

VII. CONCLUSIONS

A large proportion of aging males develop BPH
and, until recently, the only options for treatment were
surgical intervention or watchful waiting. During the
last 10 years, progress in medical therapy of BPH has
resulted in effective treatments patterns leading to a sig-
nificant improvement in the quality of life of affected
patients. At present, two different classes of agents are
available for BPH treatment: α-blockers and 5α-reduc-
tase inhibitors. Although sexual related side effects are
more often reported with 5α-reductase inhibitors than
with α-blockers [79], the reverse is true for reduction
in risk of BPH-related surgeries [80]. A population-based
cohort study, conducted in more than 5000 patients,
receiving either α-blockers or 5α-reductase inhibitors
(finasteride), showed that the incidence of BPH-related
surgery was higher in α-blocker-treated patients than
in 5α-reductase inhibitor-treated ones [80]. Similar
results, obtained from a retrospective analysis of patients’
data, demonstrated that the risk of experiencing serious
complication related to BPH progression (catheteriza-
tion, acute urinary retention, surgery) was significantly
lower in finasteride-treated patients compared to

patients using α-blockers [81]. A possible mechanism
of action underlying the risk reduction of BPH-related
surgery by finasteride is that 5α-reductase inhibitors,
by blocking DHT formation, shrink the prostate vol-
ume, which, in turn, is shown to be itself an important
risk factor for BPH progression and, consequently,
BPH-related surgery [80,82]. In fact, although many
variables make it difficult to predict an individual’s
clinical course, prostatic size is reported to be one of
the most important risk factors along with age and pro-
static specific antigen (PSA) value [83]. Hence, the
ideal treatment for BPH should include a medication
that reduces prostate volume without interfering with
androgen activity. Actually, patient compliance for fina-
steride may be limited by consistent sexual side effects,
such as decreased libido, altered sexual potency, or ejac-
ulatory dysfunction [84], especially in men with border-
line erectile function [85]. Well-tolerated calcitriol
analogs, such as BXL-353, might represent such a new
class of drugs, because they decrease AR-mediated
prostate growth, acting downstream of the AR on the
GF-mediated proliferation pathways. Based on the
data reviewed here, a double-blind, placebo-controlled
phase II study is currently ongoing in Italy to evaluate
the effects of a nonhypercalcemic calcitriol analog in
patients with BPH.
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thermodynamic parameters, 414

transport in GHS rats, 1348, 1348f, 1348t
VDR ablation v., 341
VDR expression affected by, 202t, 204–205
vesicular transport of, 422
VSCCs inactivated by, 755–756, 756f
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Distal convoluted tubule (DCT), transcellular Ca/Mg reabsorption
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Ca absorption by VDR-null mouse, 435
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transcellular/paracellular Ca absorption in, 422–424, 423f

Dutch
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hypovitaminosis D in institutionalized elderly, 1094

E
EAE. See Experimental allergic encephalomyelitis
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double bond system, 1425t–1426t, 1436
early clinical trials of, 1742
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VDR transcriptional activity v., 1474t
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in vivo colon cells influenced by, 1714
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VDR ligand treatment v., 637t, 638–639
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regulated by, 865
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as phosphatonin, 1164–1166
in XLH, 1193

Fibroblasts, in HVDRR studies, 1212–1217
Fibromyalgia, D3 mitigating, 999t
Fibrous dysplasia, pathogenesis of hypophosphatemia in, 1192
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GDNF. See Glial cell-derived neurotrophic factor
Gelsolin

in actin-scavenger system, 143
growth nucleation v. DBP, 147

Geminis, 1511–1522
colon cancer treatment with, 1521–1522
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Ca absorption v. 1,25(OH)2D in, 1342, 1343f
diagnosis v. causes of normocalcemic hypercalciuria, 1340,

1340t
dietary Ca restriction v., 1351
elevated 1,25(OH)2D in, 1341–1342, 1342f
genetic hypercalciuric rats as animal model of, 1346–1350
human genetic, 1346f, 1350–1351, 1351t
inheritance, 1340–1341, 1340f
intestinal Ca absorption in, 1341, 1341f
low bone mass associated with, 1342–1343
nephrolithiasis in, 1142, 1339–1352
overview, 1339–1341
pathogenesis of human, 1341–1346
pathogenetic models of, 1343–1346, 1344f

external Ca balance v., 1344–1345, 1345f
fasting PTH/urine Ca v., 1344
1,25(OH)2D excess v., 1344f, 1345–1346, 1347f
tests of, 1344–1346
urine Ca/Ca balance/low Ca diet v., 1345, 1345f, 1346f

renal Ca reabsorption decreased by, 1342
therapeutics v. Ca metabolism, 1351
thiazides v., 1351

IDM. See Infants of diabetic mothers
IFNγ. See Interferon-γ
IGF. See Insulin-like growth factor
IGF-I

D metabolism influenced by GH and, 1254t, 1258
20-epi D analogs interfering with, 1498–1499

IGF-II
in EB1089 antiproliferative activity, 1714
20-epi D analogs interfering with, 1498–1499

IH. See Idiopathic hypercalciuria
Ileum

high Ca absorption quantity in, 778
transcellular/paracellular Ca absorption in, 422–424, 423f

Ilium, fracture suggesting D deficiency, 973
IMCal. See Intestinal membrane calcium-binding protein
IMCD. See Inner medullary collecting duct
Immune diseases

D analogs v., 1500–1501
VDR polymorphisms v., 1146–1148

Immune responses
cardiovascular disease v. D modulating, 902
innate/adaptive layers of, 631
selective intervention in, 631–633, 632t
VDR ligands mediating, 631–643

mechanisms involved in, 643, 643f
Immune system

CKD/1,25(OH)2D3 deficiency/resistance in, 1326–1327
D-deficiency-associated abnormalities in, 1389
D/diabetes v., 1767–1773
D endocrine system involved in, 291
D metabolite local regulatory effects on, 1387–1390
DBP role in, 126–127
VDR ablation effect on, 346

Immunosuppressants
D analogs combined with, 1500
D metabolism influenced by, 1255t, 1272–1273

Import receptors, nuclear import mediated by, 366, 367f
Importins. See Import receptors
Infants

acute hypocalcemia therapy for, 1058
Ca absorption in human milk/formula-fed, 813, 814t
D actions in perinatal, 803–808
D deficiency/Ca absorption in, 811–818
D3 dosage considerations for, 1002–1003, 1009t
D supplementation for formula-fed, 808
D supplementation for low-birth-weight, 808
early/late neonatal hypocalcemia in, 1055
infant/maternal D supplementation v. 25OHD in, 

846–847, 846f
low maternal D/Ca intake v., 841–843
maternal Ca intake v. BMC in, 843, 843f
normal term, 804–805

Ca absorption in, 813–814
Ca intake recommendations for, 813, 813t
D deficiency/Ca absorption in, 813–814
D in, 814
supplemental D sources for, 814, 814t

premature, 805–807
D deficiency/Ca absorption in, 812–813
D in, 806, 806f
early neonatal hypocalcemia v., 805–806
nutritional rickets in, 968
osteopenia risk criteria for, 812, 812t
postnatal D supplementation for, 806–807

rickets and Chinese, 793
term growth-retarded, 805
VDDR v. black, 791

Infants of diabetic mothers (IDM), pathogenic factors in, 807
Infections

children with rickets v., 1068
VDR polymorphisms v., 1148

Inflammation, 126
DBP role in, 126–127
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Inflammatory bowel disease (IBD). See also Crohn’s disease
clinical/biochemical features of, 1302
VDR ligand treatment v., 637t

Infrared spectroscopy, tissue mineralization quantified with, 481,
482–483, 482f

Inner medullary collecting duct (IMCD), vasopressin-stimulated
water reabsorption v. CaR, 558

Inorganic phosphate (Pi)
aging v. serum concentration of, 455
chemistry, 453
circadian rhythm in serum concentration of, 455
disorders associated with renal wasting of, 467–470

common metabolic pathway hypothesized in, 469–470
distribution in body, 453
extracellular homeostasis of, 453–455, 454f
homeostasis, 453–469

regulation, 1159–1161
v. NPT2a-related signaling, 1161

1α-hydroxylase activity v. restricted, 464, 464f
intestinal absorption of, 455–457

cellular aspects in, 455
molecular mechanisms in, 456, 456t
NPT2b gene expression v., 455–456, 456t
regulation of, 455–456

kidney excreting, 516, 516t
kidney reabsorbing, 516
NPT2a regulating reabsorption of, 459, 461t
renal transport of, 457–463

cellular aspects of, 457–458, 458f
molecular aspects of, 456t, 458–459
physiology/tubular localization in, 457

supplementation in metabolic bone disease, 927
transport in bone, 465–467
type II cotransporter in handling, 1160

Insufficiency
in adults/elderly, 1085–1097
consequences of, 1088–1090
deficiency v., 1085–1086
determinants, 1086–1088
elderly v. consequences of, 825–826
medical causes of, 1088
muscle weakness in, 1090
prevalence, 1090–1094
preventing, 1094–1096, 1097

Insulin
D metabolism influenced by, 1254t, 1259
EGF keratinocyte proliferation stimulation enhanced 

by, 614
proximal tubular Pi transport v., 461t
renal Pi excretion decreased by, 516t
resistance in D deficiency v. HDM, 1816
secretion influenced by 1,25(OH)2D3, 1764–1765
secretion stimulated by 1α,25(OH)2D3, 394–395, 395f
serum phosphate depressed by glucose and, 1177
synthesis/secretion in NOD mice, 1765, 1766f
synthesis/secretion in VDR KO mice, 1765, 1765f
type I collagen synthesis increased by, 704

Insulin-like growth factor (IGF)
mitogenic activity inhibited by D compounds, 1665
in 1,25(OH)2D3 actions on prostate cells, 1692–1693, 1692f
system interacting with 1,25(OH)2D3/EB1089, 1581–1582

Integument
D’s role in, 609–622
VDR ablation effect on, 346–348, 346f

Interferon-γ (IFNγ)
CYP24A1 up-regulation inhibition v., 100
D metabolism influenced by, 1254t, 1263

Intestinal membrane calcium-binding protein (IMCal), 
Ca entry v., 416

Intestine. See also Colon; Duodenum; Ileum
active Ca transport in, 414
age v. 1,25(OH)2D resistance/Ca absorption by, 1104–1105,

1105f
calbindin-D9K/D28K in, 722–724, 730t
CaR in, 559
CKD with low 1,25(OH)2D3 or 1,25(OH)2D3/VDR resistance in,

1322
corticosteroids influencing Ca absorption in, 445
CYP27B1/CYP24 expression in, 1717–1719
D analogs v. induced tumors in, 1451
D deficiency/depletion v., 1294
D-dependent Ca absorption mechanisms in, 433–440
dexamethasone influencing Ca absorption in, 445, 447f
ECaC2/calbindin-D9K mediating CA absorption by, 430f, 440
estrogens v. Ca absorption in, 444–445
gestation v. Ca absorption in, 440–442, 441f, 441t, 442f
24-hydroxylase enzyme regulation in, 92
lactation v. Ca absorption in, 441f, 441t, 442–444, 442f, 443f
LCA detoxification in, 867–868, 868f
1,25(OH)2D3 and Ca absorption by, 411–424
1,25(OH)2D3 antioxidant activities/CA absorption in, 

764t, 767
25OHD correlated with Ca absorption efficiency in, 783
paracellular path in Ca absorption, 421–422
Pi absorption in, 455–457

cellular aspects of, 455
molecular mechanisms of, 456, 456t
NPT2b gene expression v., 456–457, 457t
regulation of, 455–456

segments v. Ca absorption, 413, 422–424, 423f
transcellular/paracellular Ca absorption in, 429, 430f

Intoxication
Ca/24-hydroxylase catabolic pathway in, 1365–1367, 1366t
Ca v. renal 1α-hydroxylase in, 1365, 1365t, 1366t
clinical manifestations of, 1368
D absorption/input v. risk of, 784
D2 causing most cases of, 1008
DBP/free metabolite level in, 1367–1368
diagnosis of, 1369
diagnosis of endogenous D, 1392–1393
diagnosis/prevention/treatment v. endogenous, 1392–1394
excessively fortified milk causing, 1009t–1010, 1066
forms of exogenous, 1355–1359
hypercalcemia due to, 1355–1372
metabolic bone disease patient SH v., 917
myocardial ischemia v. EKG changes in, 1368
sarcoidosis associated with endogenous D, 1379–1380
target tissue response to 25OHD in, 1364
TPTX rat 24-hydroxylase activity v., 1366–1367, 1367t
treatment of, 1369–1370
VDR in, 1362–1365

Intracellular receptor gene family, VDR in, 172–173
Intracellular vitamin D binding proteins (IDBPs)

D analog selectivity influenced by, 1462–1463
in D-resistant New World primates, 359–360
hsp70 family members homologous to, 359, 360f
in intracellular D trafficking model, 360
in 25OHD3 1α-hydroxylation, 73
“sink”/“swim” hypotheses for, 359–360, 360f

Intragenic interaction, VDR gene analysis v., 1136f, 1138
Irish, winter hypovitaminosis D in adult, 1091, 1091f
Isoflavones, PCa combination therapy with soy, 1697
Italians

Ca v. colorectal cancer in, 1622
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Italians (Continued)
climate v. D in, 1026
hypovitaminosis D in elderly, 1092–1093
winter hypovitaminosis D in adult, 1091, 1091f

J
Japanese

Buddhist vegetarians v. metabolic bone disease, 917t
Cdx2 polymorphism in, 1126
CKD/VDR polymorphisms/expression in, 1319
FokI RFLP v. height in young adult, 1143
hypovitaminosis D in adult, 1091
PCa risk for indigenous, 1681
PCa risk in, 1601
VDR gene polymorphism v. BMD in, 243
VDR polymorphism v. PCa risk in, 1682
VDR polymorphisms v. diabetes in, 1146
VDR polymorphisms v. MS in, 1147
VDR polymorphisms v. PCa in, 1139t, 1145
VDR polymorphisms v. psoriasis in, 1146
VDR polymorphisms v. renal cell carcinoma in, 1146
westernization v. PCa in, 1600, 1600f

Jejuno-ileal bypass
bone disorders associated with, 1302–1303
clinical features of, 1302–1303
management, 1303

Jejunum, high Ca absorption quantity in, 778
Jews

metabolic bone disease v. lactose intolerance in, 917t
serum 25OHD in light-skinned, 794–795

JG cells. See Juxtaglomerular cells
JNK. See Jun-N-terminal kinase
Jun-N-terminal kinase (JNK), in RANKL-induced 

osteoclastogenesis, 678
Juxtaglomerular (JG) cells, renin synthesized/secreted by, 

871, 872f

K
Kellgren score, OA diagnosed with, 1144
Keratinocyte-GF (KGF)

BPH cells v. BXL–353 and, 1836–1837, 1837f
human BPH cells v., 1834, 1835f

Keratinocytes
Ca regulating proliferation/differentiation of, 609
Ca sensing mechanism of, 615–616, 615f
Ca switch inducing changes in, 616
Ca switch stimulating phosphoinositide metabolism in, 617–618
clinical implications of 1,25(OH)2D production by, 612–613
DRIP205/p160 recruitment in differentiation of, 273
epidermal layers of, 613, 613f
growth/differentiation regulators of, 613–615
24-hydroxylase enzyme regulation in, 93
1,25(OH)2D3/deltanoid-induced differentiation modeled in, 1637t
1,25(OH)2D3 inhibiting differentiation of, 1781
1,25(OH)2D3 inhibiting PTHrP production in, 741t
1,25(OH)2D production by transformed, 612
1,25(OH)2D production regulated by differentiation of, 611–612
1,25(OH)2D3 protecting epidermal, 764t, 766–767
1,25(OH)2D regulating differentiation of, 619–621, 620f
regulation of differentiation by, 613–621
retinoic acid receptors identified in, 614
VDRs in mammalian/lamprey, 228

Ketoconazole
D metabolism influenced by, 1255t, 1266–1267
kidney 1α-hydroxylase activity regulated by, 78

KGF. See Keratinocyte-GF
KH1060

analog-VDR complex stabilized by, 1496
autoimmune type I diabetes prevented by, 1500
breast cancer cells/tumors v., 1669
in leukemia combination therapy, 1733
leukemic cells v., 1735
metabolism, 1438, 1439f
metastasis v., 1576
as noncalcemic analog, 1440, 1441t
structure v. 1α,25(OH)2D3, 285–287, 286f
synthesis, 1490–1491, 1492f, 1496t

Kidney
aging v. D responsiveness by, 833
Ca handling by, 515–516
calbindin-D9K/D28K in, 724, 730t
CaR in, 556–558
CKD with low 1,25(OH)2D3 or 1,25(OH)2D3/VDR resistance in,

1325–1326
D analogs treating chronic disease of, 1827
D-dependent protein distribution/regulation in, 519–528
D-responsive proteins in, 520t
D v., 515–528
DBP uptake in megalin-deficient, 154, 154f, 155f
dystrophic mineral deposits in, 477–478, 478t
ECaC1 expression restricted to mouse, 431
function deteriorating with aging, 827
glucocorticoids directly affecting, 1243, 1243f
1α-hydroxylase/24-hydroxylase expression in fetal, 852–853,

853f
24-hydroxylase distribution in, 528
24-hydroxylase enzyme regulation in, 91–92
24-hydroxylase expression in, 86–87
24-hydroxylation in, 21–22
JG apparatus producing renin in, 871
keratinocyte 1,25(OH)2D negative feedback loop v., 611
mass/CKD v. 1,25(OH)2D bioactivation, 1379–1380
mouse models with defective phosphate transport by, 

462–463
1,25(OH)2D3/analog immunoregulatory properties in, 1519
1α,25(OH)2D3-mediated rapid response in, 386t
in 25OHD metabolism, 516–518
1,25(OH)2D3 produced by, 782
1α,25(OH)2D3 produced in, 69, 70f
1,25(OH)2D v. phosphate transport in, 1161–1162, 1162f
1,25(OH)2D3/VDR-mediated signal termination in, 221f, 222
1α,25(OH)2D3 VDRnuc in, 385t
Pi flux in human, 453–455, 454f
Pi handling by, 516, 516t
Pi homeostasis arbitrated by, 1159
Pi transport in, 457–463

cellular aspects of, 457–458, 458f
molecular aspects of, 456t, 458–459
physiology/tubular localization of, 457

PTHrP expression in, 739t
rejection inhibited by 1,25(OH)2D3/analogs, 641t
tubular defects and hypophosphatemia, 981–984
VDR in, 520–523

polyclonal antibodies detecting, 521, 521f
Kidney disease

1,25(OH)2D secretion v., 1313
secretory control/hormonal interactions v., 1313, 1314f

Klotho gene, kidney 1α-hydroxylase activity v., 78
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Knockout (KO) mice
alopecia in, 1229–1230
c-src, osteopetrosis in, 677
calbindin D28K, urinary Ca/creatinine ratio in, 525
cyp24A1

growth plate architecture in, 108–109, 108f
24-hydroxylation in, 107–109
phenotype of, 107–109, 107t

cyp27A1
hepatic 25-hydroxylation in, 105–106
phenotype of, 106

cyp27B1
D-dependent gene expression in, 110
1α-hydroxylation in, 109–113
hypocalcemia/hypophosphatemia/secondary 

hyperparathyroidism in, 703
phenotype of, 109–110
phenotype rescue in, 110–112

DBP, 149
serum D metabolites v. bone abnormalities in, 489f
viable immune function in, 127

ERα/ERβ, 441f, 445
FGF-23, phosphate homeostasis in, 1193–1194
full-length CaR, 616–617
intestinal Ca absorption in, 429–437, 446t
JNK1, RANKL-induced osteoclastogenesis in, 678
megalin, 154–156
Npt2

Ca absorption in, 440
generation/characteristics of, 439–440
phosphate homeostasis in, 439–440

Npt2a
intrinsic osteoclast defect in, 467
Npt2c expression in NHERF and, 1162
renal phosphate transport defects in, 462
renal Pi reabsorption v. P450c1α gene expression in, 464f, 465

1α(OH)ase
ECaC1 expression reduced in, 438
generating, 438
hypocalcemia/rickets/osteomalacia in, 489
lower calbindins-D expression in, 525
mineral homeostasis in, 438–439
PDDR in, 438–439, 489

prehypertrophic chondrocytes showcased by, 578
RXRα conditional, alopecia in, 233
SRC coactivator family models in, 294–295
VDR, 224–225, 341–348

alopecia in, 620, 621, 665
Ca absorption in, 433–437, 434f
Ca absorption v. Ca transporter gene expression in, 435–437,

436t, 437t
Ca entry v. Ca transport in, 417
Ca/P ameliorating skeletal abnormalities in, 1403–1404
calbindin D28K expression v. age in, 525
D-dependent active intestinal Ca absorption in, 433–438
dietary intervention v. Ca absorption in, 434f, 436t, 437–438
estrogen deficiency in, 441f, 445
generating, 433
gestation/intestinal Ca absorption in, 440–442, 441f, 441t, 442f
HVDRR/alopecia link in, 621
hypocalcemia in, 665
infertility in, 665
intraperitoneal glucose tolerance test in, 1765, 1765f
lactation/intestinal Ca absorption in, 441f, 441t, 442–444,

442f, 443f
renin expression/Ang II production in, 875–877, 876f

KO mice. See Knockout mice
Koreans

VDR polymorphisms v. psoriasis in, 1146
VDR polymorphisms v. RA in, 1147

Kuwaitis, sunlight exposure v. rickets in, 1066–1067

L
Lactation

BMC/BMD during, 843f, 844–845
Ca homeostasis v., 204
D/Ca metabolism during, 843–844
D metabolism in, 839, 843–847
maternal Ca economy v., 845, 845f
PRL v. D metabolism during, 1258
VDR WT/KO mouse intestinal Ca absorption during, 441f, 441t,

442–444, 442f, 443f
Lactose intolerance, Ca intake v., 1026
Lampreys, VDRs in, 227–228, 279
Late neonatal hypocalcemia (LNH), 807–808
Latinas, hVDR polymorphisms v. breast cancer risk in U.S., 245
LBDs. See Ligand binding domains
LC/MS. See Liquid chromatography/mass spectrometry
LCA. See Lithocholic acid
LD. See Linkage disequilibrium
Lebanese

climate v. D in, 1026
D metabolism in, 794
hypovitaminosis D in, 1087
low serum 25OHD in, 1026

Leo KH-1060, SAR in design of, 1412, 1413f
Leprosy

extrarenal D metabolite overproduction v., 1390t, 1391
hypercalcemia/D hypersensitivity in, 1361

Leukemia
D analogs effective against, 1734–1736
D compound combination therapy v., 1733–1734
RUNX TF localization in acute myelogenous, 335

Leukemia cells
bisphenol compounds v. differentiation of, 1559, 1559f
calcipotriol v., 1734
D compounds v., 1730–1734, 1730t, 1731, 1731t
molecular mechanisms of D compounds v., 1731–1733
1,25(OH)2D3 v. myeloid, 1731
1αOHD3 v., 1734

Leukocytes, antigenic stimulants activating phagocytic function in,
127

Libyans, rickets in infant, 795
Ligand binding domains (LBDs)

coactivator binding v. HVDRR-related mutations in VDR, 
1225–1226

Glu420Lys, 1226
connecting region poorly conserved in, 279–280
crystal structure of D NR, 279–288, 280f
D analogs inducing conformational change in VDR, 1452f, 1453,

1550, 1550f
deltanoids v. nuclear VDR, 1408–1411, 1410f
16-ene-24-sulfone deltanoid v. rickets mutant VDR, 1411, 1411f
human/rat VDR, 174–176, 175f
HVDRR/alopecia from Glu329Lys/366delC mutations in VDR,

1221f, 1226
HVDRR-related mutations in VDR, 1222–1226
hypothetical conformations of VDR, 1473, 1473f
ligand binding changing conformation of VDR, 176, 279, 280f,

293, 294f, 313, 321
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Ligand binding domains (Continued)
NRs dimerizing via, 314
1,25(OH)2D3 binding v. HVDRR-related mutations in VDR,

1222–1224, 1223f
Arg274Leu, 1222–1223, 1223f
Cys190Trp, 1223f, 1224
His305Gln, 1223, 1223f
Ile314Ser, 1223, 1223f
Ile268Thr, 1223f, 1224
structural analysis of, 1224
Trp286Arg, 1223f, 1224

1,25(OH)2D3 stabilizing VDR, 313
proteins with 1α,25(OH)2D3, 387–392
putative alternative VDR, 400
“squelching” in NR, 291–292
structures in hVDR∆/zVDR, 284–285, 284f
topology of hVDR∆, 281, 283f
VDR, 1211–1212, 1211f
in VDR/DNA binding, 178
VDR-RXR heterodimerization v. HVDRR-related mutations in

VDR, 1224–1225
Arg391Cys, 1221f, 1224
Gln259Pro, 1221f, 1225
Phe251Cys, 1221f, 1225
structural analysis of, 1225

VDRnuc v. DBP, 387, 387f
zVDR, 284, 284f
zVDR-Gemini channel showing adaptability in, 287–288

Ligands
allograft tolerance induced using VDR, 1519
BPH inhibited by VDR, 1833–1840
classes of nonsecosteroid D, 1565
genomic/nongenomic action specificity of, 1461
hVDR∆ binding, 280–281
identification of ODF, 670–673
immune responses regulated by VDR, 631–643
immunoregulation by VDR, 633, 643, 643f
immunosuppressive agents combining with VDR, 642
nonsecosteroid VDR, 1557, 1558f
novel mammalian VDR, 225–227, 227f
potential uncharacterized novel VDR, 234f, 235
regulatory T cells enhanced by, 636
structure of hVDR complexed to superagonist, 285–287, 286f
tissue selectivity in VDR, 271
VDR immunomodulatory mechanisms in autoimmune disease

models, 636–640, 637t
VDR signaling activated by, 235–237, 236f

Linkage disequilibrium (LD)
FokI RFLP surrounded by small, 1128f, 1130
polymorphisms predicted by, 1126–1127

Lipids, bile acids in digesting/absorbing, 863
Lipopolysaccharide (LPS)

in macrophage 1α-hydroxylase amplification, 1385–1386, 1385f
1,25(OH)2D3 down-regulating NOS II in injection of, 1783

Liquid chromatography/mass spectrometry (LC/MS), 
20-methyl-1α,25(OH)2D3 metabolite, 1434, 1435f

Lithium, D metabolism influenced by, 1255t, 1274
Lithocholic acid (LCA)

detoxification amplified by supplemental D, 246, 247f
in ED-71 synthesis, 1534, 1534f
intestinal detoxification of, 867–868, 868f
as nonsecosteroid VDR agonist, 1557, 1558f
VDR regulating CYP3A-dependent detoxification of, 867

Liver
D 25-hydroxylation in, 17–19
in D metabolism, 1294–1296

Liver (Continued)
D metabolites secreted in, 1295
D3 uptake by, 47–48
DBP production in, 121
enterohepatic circulation in, 863–864, 1295–1296
1,25(OH)2D3/analog immunoregulatory properties in, 1519
1α,25(OH)2D3-mediated rapid response in, 386t
PTHrP expression in, 739t
rejection inhibited by 1,25(OH)2D3/analogs, 641t

Liver disease. See also specific liver diseases
bone disorders associated with, 1303–1306

Liver X receptor (LXR), cholesterol/bile acid levels 
controlled by, 865

LNH. See Late neonatal hypocalcemia
Locke, John, rickets reported by, 967
Looser’s zones

impaired mineralization ambiguously shown by, 1043
in osteomalacia, 971–973, 972f–973f
radionuclide bone scans detecting, 986–988, 989f
in severe rickets, 1071
in XLH patients, 981, 982f, 984f

LPS. See Lipopolysaccharide
LXR. See Liver X receptor
Lymphocytes, paracrine 1,25(OH)2D suppression of, 1387f, 

1388–1389
Lymphoma, hypercalcemia in, 1361–1362
Lysosomes, DBP degradation in, 157, 157f
Lythgoe coupling, in steroid precursors, 1414–1416, 1414f, 1415f

M
Macrophages

24-hydroxylase enzyme regulation in, 92
D-1α-hydroxylase in, 1381–1382, 1382f
1α-hydroxylase v. immune cell regulators in, 1384–1387
intracrine/autocrine 1,25(OH)2D activation of, 1387–1388, 1387f
1,25(OH)2D-directed 24-hydroxylase activity in, 1383–1384
PTH/Ca/Phosphate responsiveness lacking in, 1382–1383, 1383f

Magnesium (Mg). See also Hypermagnesemia; Hypomagnesemia
CaR v., 553–554
jejuno-ileal bypasses reducing serum, 1303
in PTH secretion, 1053
supplementation in acute hypocalcemia therapy, 1058

Magnetic resonance imaging (MRI)
acid phosphate distribution/crystal structure from, 483
in evaluating bone metabolic disease, 924
tumors causing TIO v. whole body, 988

Malignant hyperthermia, hyperphosphatemia in, 1178
Malnutrition

hypocalcemia due to, 1052f, 1055–1056
in last trimester of pregnancy, 803

Mammary gland
D in, 857–858
development role of D endocrine system, 291
development v. VDR, 345–346
VDR expression/role in normal, 1669–1670, 1670t

MAP kinase. See Mitogen-activated protein kinase
MAR. See Mineral apposition rate
MARRS. See Membrane-associated rapid response steroid binding

protein
Matrix attachment regions (MARs)

chromatin units between, 314, 315f
genomic domain/nuclear scaffold association mediated by, 329f

Matrix extracellular phosphoglycoprotein (MEPE), 
as phosphatonin/minhibin, 1164, 1166

1872 INDEX



Matrix Gla protein (MGP), in mineralization v. 1α,25(OH)2D3, 716
Matrix metalloproteinase–9 (MMP–9) gene, 1,25(OH)2D3 targeting,

566, 567
Matrix vesicles

D metabolites modulating PKC in, 586
extracellular matrix growth factors activated by, 589–590
genomically controlled production of, 589
in matrix calcification, 589
nongenomic regulation of, 589–591

proposed mechanism for, 590–591, 590f
1,25(OH)2D3 accelerating crystal formation in, 591
1,25(OH)2D3/24,25(OH)2D3 affecting matrix calcification

through, 590–591
Pi transport in, 466

Maturation (mitosis) promoting factor (MPF), cell cycle G2/M 
transition regulated by, 1645, 1645f

Maxacalcitol. See 22-Oxa-calcitriol
Maximum voluntary contraction (MVC)

D v. veiled Danish Arabs’, 1812, 1812f
25OHD v., 1812

2MbisP. See 2-Methylene-19-nor-(20S)-1α-
hydroxybishomopregnacalciferol

MC1288
analog-VDR complex stabilized by, 1496
chronic graft rejection inhibited by, 642
structure v. 1α,25(OH)2D3, 285–287, 286f
as superagonist, 1477–1478
VDR transcriptional activity v., 1474t

MC–903
cellular differentiation assay v., 1543
psoriasis v., 1543

McCollum, E. V., in vitamin A/B/D discoveries, 4
McCune-Albright syndrome, fibrous dysplasia as component of, 1192
MCM proteins. See Mini-chromosome maintenance proteins
MCR. See Metabolic clearance rate
2MD. See 2-Methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3
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Ca reabsorption in, 519, 520f
25OHD3 in, 519

Nerve growth factor (NGF), 1,25(OH)2D3 stimulating, 1781–1782
Nervous system
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Nongenomic response, steroid hormones in, 98–99
Normocalcemia, CaR in restoring, 551
NOS II. See Type II nitric oxide synthase
NPC. See Nuclear pore complex
NPT2a, not responsible for HHRH, 469
NPT2a gene, expression/protein production regulation in kidney,
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crystal structures of LBDs in, 279–288, 280f
DNA response element recognition by, 230, 231f
everted repeats in, 317–319, 318f
export of, 368
first described defect in superfamily of, 1218
human, 225, 226f–227f
interaction domains/coactivators in, 235–237
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RXR as heterodimeric partner for, 291, 292f
VDRs in superfamily of, 225–228

Nuclear VDR (VDRnuc)
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calbindin-D9K/D28K in, 724–725, 730t
as D analog therapy target, 1501
D compounds v. apoptosis of, 1498
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production regulation, 739–742
SCCs elaborating, 612
stimulators/inhibitors in normal/cancer cells/tissues, 

740–742, 741f
therapeutic strategies inhibiting production of, 742–746, 742f
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Parkinson’s disease (PD), 765, 1779
D analogs treating, 1785
1,25(OH)2D3 antioxidant activities in, 764t, 766–767

Past medical history (PMH), in approaching metabolic bone 
disease, 917

PBAF. See Polybromo- and BAF-containing complex
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Prooxidant, 1,25(OH)2D3 as, 763–765, 764t
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Psoriasis, 1791–1801

calcipotriol/betamethasone dipropionate treating, 1500
calcipotriol treating scalp, 1785–1786
clinical use of 1,25(OH)2D3/analogs v., 1784–1787
D/analog biological effects in, 1781, 1781f
D analogs treating, 1450
D analogs v., 744
efficacy/safety of D analogs treating, 1504, 1504t
MC–903 v., 1543
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RANKL/ODF receptor identified as, 673–674
as RANKL/ODF signaling receptor in in vitro osteoclastogenesis,
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Regulator of G protein signaling (RGS)–2, 1,25(OH)2D3 inversely

modulating, 654
Regulatory T cells

in autoimmunity, 1754
1,25(OH)2D3 autoimmunity v., 1755

Renal cell carcinoma, VDR polymorphisms v., 1146
Renal endocytosis, 25OHD3, 153–159

cell biology of, 156–157
molecular biology of, 157–159
physiology of, 153–156
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Renal failure
D analog action/tissue specificity v. chronic, 1826–1827
D in, 1313–1333
future D analog roles in chronic, 1826–1827
hyperparathyroidism v. D in, 1821
intravenous 1,25(OH)2D therapy v., 1822–1823
mechanisms of 1,25(OH)2D resistance in chronic, 

1822, 1822f
OCT in dog model of chronic, 1527
1,25(OH)2D resistance causing secondary hyperparathyroidism

in, 1821–1823
1,25(OH)2D resistance in chronic, 1821–1822
parathyroid hyperplasia in chronic, 1823, 1824f
secondary hyperparathyroidism v., 1821–1827

Renal osteodystrophy, 974
aluminum toxicity in, 979–981
metastatic calcification in, 979
1,25(OH)2D3/VDR action in, 1322–1326
periosteal new bone formation in, 979
radiology of, 974–981, 975f

Renin
19-nor Gemini suppressing expression of, 1518, 1518t
D suppression v. other mechanisms regulating, 877
Gemini analogs inhibiting, 1514–1518
RAS cascade rate limited by, 871
synthesis/secretion control, 872–873

Renin-angiotensin-aldosterone (RAA) axis, D regulating, 901
Renin-angiotensin system (RAS), 871–879

CKD/1,25(OH)2D3 deficiency/resistance in, 1326
components in hypertension treatment, 1514
D endocrine system interaction with, 877–878, 878f
Gemini compounds inhibiting, 1516–1518, 1518t
1,25(OH)2D3 as negative endocrine regulator of, 875–878

animal studies evaluating, 875–877
hypothesis of, 875
physiological implications of, 877–878

overview, 871–872, 871f
Renin gene

expression regulation, 873
expression suppressed by D, 877

Reproduction
active Ca absorption during, 440–445
VDR ablation affecting, 345–346

Reproductive organs, D’s role in, 851–860
Resistance

humans having New World primate-like, 355–356
hypocalcemia due to hereditary, 1056
index case in humans, 355
in New World primates, 352

biochemical nature of, 354–355
VDRE-BP-2 causing, 355

Response element binding protein (REBiP)
binding in cis, 356, 356f
D-resistant human patient over-expressing, 355
human, 356–357
overexpression v. HVDRR patient 1,25(OH)2D3 resistance, 

356–357, 356f
Restriction fragment length polymorphisms (RFLPs)

HVDRR-related VDR gene mutation v., 1220
in prenatal VDR gene mutation diagnosis, 1228
VDR gene, 1124, 1125f

Retinoblastoma protein, deltanoid-induced G1 block controlled 
by, 1649

Retinoic acid (RA), VDR expression affected by, 202t, 206–207
Retinoic acid response elements (RAREs), human VDR 

promoter, 200

Retinoid X Receptor (RXR)
import/export receptors interacting with, 368–371
intranuclear trafficking of, 374–376
as NR/VDR heterodimeric partner, 291, 292f
nucleocytoplasmic trafficking regulation, 371–374
“piggyback” nuclear import of, 369, 371f
putative NLSs in, 369, 370f
shuttling v. transcription, 371
subcellular trafficking, 363–376
in VDR/DNA binding, 178–180, 179f, 220, 220f

Retinoids
in PCa combination therapy, 1696
VDR expression affected by, 206–207

RFLPs. See Restriction fragment length polymorphisms
RGS-2. See Regulator of G protein signaling–2
Rhabdomyolysis, hyperphosphatemia in, 1178
Rheumatoid arthritis (RA)

1,25(OH)2D accumulation in, 1389–1390
subperiosteal erosions simulating, 975f, 976
VDR ligand treatment v., 637, 637t
VDR polymorphisms v., 1147

RIAs. See Radioimmunoassays
Rickets, 967. See also Osteopenia; specific types of rickets

Al toxicity in, 980
biochemical abnormalities in nutritional, 1069–1070
biochemical evolution of, 1036–1039
bone turnover markers elevated in nutritional, 1069–1070
Ca2+ availability v. mineralization in, 579
Ca v. D deficiency in, 1077, 1077f
cartilage prehypertrophic/hypertrophic zones increased in, 

579, 580f
causes of, 925–926, 925t–926t
Chinese incidence of infantile, 793
in cities, 967, 1065
classical features of, 1067–1068, 1068f
clinical presentation of nutritional, 1067–1069
D3 curing, 999t
D deficiency and children’s nutritional, 1065–1077
D deficiency causing, 566
D deficiency impairing bone resorption in, 777, 777f
D/intestinal Ca absorption v., 703
D metabolism in, 1039–1040
D single dose therapy v., 1072
deltanoids v. VDR mutants associated with, 1409, 1411f
dental phenotype of, 602, 602f
dietary Ca deficiency causing, 1074–1075, 1075f
epidemiology of D deficiency/nutritional, 1066–1067
in exclusively breast-fed children, 777
geographical distribution of colon cancer and, 866
high-Ca diet preventing KO mouse, 429
history, 4, 37–38, 967, 1065–1066
HVOii/HVOiii v. infantile, 1038
in Los Angeles Zoo New World primates, 352–353, 353f
mineralization in healing, 1071–1072, 1071f
oncogenic, 983–984
pathogenesis, 1029–1044, 1076–1077, 1077f
pathophysiological progression of D-deficiency, 1070
PDDR v. nutritional, 1197
premature infants v. nutritional, 812, 812t
prevention of nutritional, 1072–1074
radiology of, 967–990, 981, 982f, 1070–1072
radiology of D-deficiency, 968–971, 969f, 970f, 971f
restricted definition of, 1031
risk v. race/population, 789, 790t
sunlight v. incidence of, 246
symptoms caused by defective CYP27A1, 61–62
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Rickets (Continued)
treatment of nutritional, 1072
ultraviolet/sunlight v., 4–5
VDR ablation v., 342–343
in VDR-null mice v. mineral homeostasis, 433
vitamin D3 activity v. vitamin D-dependency, 7

RID. See Receptor interacting domain
Ro-26–9228

mechanism of action, 1480
osteoporosis v., 1451
potency in intestinal cells, 1480, 1480f
structure, 1479f
target tissue gene expression v., 1480, 1481f

ROS. See Rat osteoblastic osteosarcoma; Reactive oxygen species
RRAs. See Radioreceptor assays
RUNX proteins

chromatin remodeling due to, 332
gene expression suppressed by, 333
intranuclear targeting signal v. function of, 335
localization, 334
1,25(OH)2D3 regulation dependent on osteoblast maturity, 651
promoter element/co-regulatory protein interactions by, 332
promoter regulatory complex organization determined by, 333

S
SAGE. See Serial analysis of gene expression
SAR. See Structure-activity relationship
Sarcoidosis

active D metabolite produced extrarenally in, 1380
disordered Ca balance pathophysiology in, 1381–1387
dysregulated overproduction of 1,25(OH)2D in, 1381
endogenous D intoxication associated with, 1379–1380
extrarenal D metabolite overproduction v., 1390, 1390t
hypercalcemia/D hypersensitivity in, 1359–1360
VDR polymorphisms v., 1147

Saudi Arabians
bone mass in, 794
D metabolism in, 794
low serum 25OHD in, 1026
sunlight exposure v. rickets in, 1066–1067
winter hypovitaminosis D in adult, 1091

Scandinavians
hypovitaminosis D in adult, 1091, 1091f
hypovitaminosis D in healthy elderly, 1092, 1092f
hypovitaminosis D in institutionalized elderly, 1093, 1093f

Scanning small-angle X-ray scattering (scanning-SAXS), mineral
particle thickness/alignment from, 481–482

SCCs. See Squamous cell carcinomas
Scleroderma

D analog therapy v., 1787
1,25(OH)2D3 treating, 1758–1759, 1758f, 1758t, 1759t

SCP. See Start codon polymorphism
Scurvy, nutrition v., 3
Secondary hyperparathyroidism

bone turnover due to, 509–510
CaR expression v. primary/uremic, 556
in chronic renal failure v. 1,25(OH)2D3 analogs, 

1331–1332, 1332f
CYP27B1 gene mutation v., 109
CYP27B1-null mice developing, 703
D insufficiency v. senile, 1088, 1088f
gastrointestinal diseases associated with, 1297
normal serum 25OHD v., 1020–1022
OCT ameliorating osteopathy in, 1531, 1533f

Secondary hyperparathyroidism (Continued)
OCT development for, 1525–1534
OCT v., 1527–1531

clinical results of, 1529–1531
preclinical results of, 1527–1529

1α(OH)ase-null mice demonstrating severe, 438
1,25(OH)2D3 deficiency/CKD v., 1324–1325, 1325f
parathyroid cell proliferation v., 544–547
parathyroid gland hyperplasia in, 1823
radiology of D deficiency, 973–974, 975f, 980f
renal disease stimulating, 974–976
renal failure and, 1821–1827
treatment in chronic renal failure

before dialysis, 1327–1328
during hemodialysis, 1328–1331, 1330f

Secreted frizzle-related protein (sFRP)–4, as phosphatonin/
minhibin, 1164

Selective estrogen receptor modulators (SERMs), in VDR ligand
tissue selectivity, 270–271

Selective progesterone receptor modulators (SPRMs), in VDR 
ligand tissue selectivity, 270–271

Seocalcitol. See EB1089
Sepsis, hypocalcemia in acute, 1057
Serial analysis of gene expression (SAGE), TIO tumors v., 1192
SERMs. See Selective estrogen receptor modulators
Sex steroids

D metabolism influenced by, 1254t, 1259–1262
1,25(OH)2D synthesis influenced by, 828

sFRP–4. See Secreted frizzle-related protein–4
SH. See Social history
Shwachman-Diamond syndrome, rickets v. differential diagnoses

for, 984–985, 987f
Side-chain cleavage, vitamin D2/D3, 25–26
Side-chain oxidation

vitamin D2, 25
vitamin D3, 17f

Simian bone disease, 351–352
D deficiency v., 351–352
New World primates susceptible to, 351–352

Single dose therapy, 1066
hypercalcemia v., 1072, 1073
patient compliance problem avoided by, 1072

Skeletal genes
controlling in vivo expression of, 327–328
intranuclear organization of D-mediated regulatory machinery

for, 327–336
Skeletal muscle, as D target tissue, 883–894
Skin

D analog actions in normal/psoriatic, 1781–1784
D system in normal/psoriatic, 1792–1793
dystrophic mineral deposits in, 478t
1,25(OH)2D3/analog immunoregulatory properties in, 1519
psoriasis/other diseases of, 1791–1801
rejection inhibited by 1,25(OH)2D3/analogs, 641t
structure/function deteriorating with age, 823
VDR in human, 1792f, 1793

Skin cancer
D analog therapy v., 1787
D photosynthesis v. recommendations for reducing, 1087
vitamin D photosynthesis v., 42–43

Skin lesions
in children v. 1,25(OH)2D3 ointment, 1786
in HIV patients v. oral 1,25(OH)2D3, 1786, 1786f

Skull, subperiosteal erosions causing “pepper pot,” 975f, 977
SLE. See Systemic lupus erythematosus
SMRT, NR co-repressor, 298–299
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Social history (SH)
in approaching metabolic bone disease, 917–918
vegetarianism in, 917t, 918
vertebral crush deformity correction guided by, 918, 918f

Soda, v. Ca intake by adolescents, 817
Sodium chloride (NaCl), CaR inhibiting MTAL reabsorption 

of, 557
Sodium (Na), excretion v. 1,25(OH)2D3 in TPTX dogs, 518
Software, VDRE screening, 322
Sp1 transcription factor, in 1,25(OH)2D3-induced differentiation,

1640
Spanish, hypovitaminosis D in elderly, 1092–1093
Spermatogenesis, SRC-2 deletion resulting in, 295
Spliceosome, hnRNPs associated with, 358–359
SPRMs. See Selective progesterone receptor modulators
Squamous cell carcinomas (SCCs), 1,25(OH)2D produced by 

keratinocytes from, 612
SRC-1

See Steroid receptor coactivator 1
Stanniocalcin

hypercalcemia v., 462
proximal tubular Pi transport regulated by, 461t

Star volume, in bone structure assessment, 961–962, 962f
Start codon polymorphism (SCP), 1124
Steroid hormones

calbindin-D28K/D in producing, 726
calbindin-D9K regulated by, 729–730
calbindin-D28K regulated by, 728–729
CYP24A1 transcription regulated by, 97
D structure v., 381, 382f
kidney 1α-hydroxylase activity regulated by, 77–78
nongenomic actions reported for, 98–99
VDR expression affected by, 205–206

Steroid precursors, in deltanoids, 1412–1416, 1413f, 1414f, 1415f
Steroid receptor coactivator 1 (SRC-1), VDR stabilization v. 

interaction with, 1472–1473, 1472f
Sterols. See also Steroid hormones

equilibrium of bound/free, 124
interpretation/relevance of measurements of antirachitic, 947–949
plasma proteins v. transport/function of, 124–125

Stomach, Ca absorption v. aging, 1105–1106
Store-operated Ca2+ (SOC)

anti-INAD antibody v. 1α,25(OH)2D3-dependent influx from,
893, 893f

INAD-based signaling complexes in 1α,25(OH)2D3-modulated
influx from, 893, 894f

muscle influx mediated by TRPC3 proteins/VDR, 892–893, 892f
Stosstherapie. See Single dose therapy
Structure-activity relationship (SAR), in deltanoid design, 1412
Strut analysis, in bone structure assessment, 961, 962f
Sunlight

alcoholics lacking exposure to, 1266
blood pressure v. D and, 873–874, 874f
colon cancer death rate v., 1571–1572
colon cancer v., 1709–1710
D from UVB component of, 1006–1007
D intake from food v., 995, 996t–997t
D nutrition/acquired bone disease v., 1297–1298
D supplementation required by high latitude, 784–785
deprivation determining D insufficiency, 1086–1087
diabetes incidence v., 1766
exposure increasing D3 status, 1009t
exposure v. age, 1102, 1109
exposure v. colorectal cancer, 1618
fatal breast/prostate cancer v., 1572
glass v. D synthesis induction by, 823

Sunlight (Continued)
HDM v., 1813–1814
high rickets incidence despite, 1066–1067
25OHD v. excessive, 1356
PCa v., 1599–1611, 1617, 1625
PCa v. exposure to, 1680–1681
rickets/colon cancer incidence v., 246
rickets v., 777
vitamin D photosynthesis regulated by, 38–39

Sunscreen, vitamin D photosynthesis v., 40–41, 41f
Superagonists, 1475–1476, 1476f

differential VDR activation by, 1475–1478, 1476f
20-epi, 1477–1478
20-natural, 1476–1477

Suppressor T cells, 1,25(OH)2D3 autoimmunity v., 1755
Swiss, hypovitaminosis D in adult, 1091
Systemic lupus erythematosus (SLE), VDR ligand treatment v.,

637t, 639–640

T
T cell response, VDR KO mice showing abnormal, 246
T cells. See also specific types of T cells

in acute allograft rejection, 1519
immunosuppressive therapy v. pathogenic, 631–632, 632t
VDR ligand immunoregulation of, 635–636, 635t
VDR ligands enhancing regulatory, 636

T-cells, in psoriasis, 1791–1792
T lymphocytes, antigens recognized by, 631
Tacalcitol. See 1α,24R-Dihydroxyvitamin D3

Taq polymorphisms, 1131t–1132t, 1135–1137
BMD v., 1142–1143

Taxanes, 1,25(OH)2D3 in combination with, 1745–1746
TC. See Tumoral calcinosis
TEI 9647, 1481–1482, 1481f
Testis

calbindin-D28K in, 726
D in, 855–856
1α,25(OH)2D3 VDRnuc in, 385t
SRC-2 deletion causing defects in, 295
VDR ablation reducing aromatase activity in, 345

Testosterone, D metabolism influenced by, 1254t, 1261
Tetany

in hypocalcemia, 920, 1049
in PDDR, 1197

TFs. See Transcription factors
TGF. See Transforming growth factor
TGFα, keratinocytes producing, 614
Theophylline, D metabolism influenced by, 1255t, 1272
Thiazide diuretics

D metabolism influenced by, 1255t, 1268–1269
as IH therapeutics, 1351

Thyroid C cells, 687
D controlling CT gene in, 687–697
embryonic development of, 687–688
neoplasia of, 688
origin/function of, 687–688

Thyroid gland
C cells in normal adult, 688
PTHrP expression in, 739t

Thyroid hormone, D metabolism influenced by, 1254t, 1262
Thyroid receptor-associated proteins (TRAP) coactivator complex.

See Mediator-D coactivator complex
Thyroparathyroidectomized (TPTX) dogs, 1,25(OH)2D3 v. 

phosphate/Ca/Na excretion in, 518
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Thyroparathyroidectomized (TPTX) rats
24-hydroxylase activity v. D toxicity in, 1366–1367, 1367t
1,25(OH)2D3 v. Ca excretion in, 518, 518f

TIO. See Tumor-induced osteomalacia
TLRs. See Toll-like receptors
TNF. See Tumor necrosis factor
TNF receptor-associated factor (TRAF) family proteins, 

in osteoclastogenesis, 676–677
TNF receptor family. See Tumor necrosis factor receptor family
TNFα, D metabolism influenced by, 1254t, 1263
Toddlers, Ca absorption in, 815
Toll-like receptors (TLRs)

LPS-induced 1,25(OH)2D production supported by, 1385
pathogens recognized by, 631

Tooth
crown influenced by D, 604
D in formation/mineralization of, 601–602
dentin/cementum in root of, 601–602
eruption delayed by rickets, 1068
eruption delayed in PDDR, 1198

Tooth enamel hypoplasia
in HVDRR, 1208
1,25(OH)2D3 partially correcting PDDR, 1202, 1203f

Total parenteral nutrition (TPN)
bone disease caused by Al in, 1270, 1303
bone disorders associated with, 1303
clinical features of, 1303
management, 1303

Toxicity, 26–27. See also Intoxication
adipose tissue loss v., 1007, 1010
arterial dystrophic calcification induced by, 478
biological markers for monitoring, 1009t
Ca/D supplementation v., 1059
cardiovascular, 899, 904–905
D2/D3, 26–27, 1356–1357
D effects on bone v. hypercalcemia in, 510
D/25OHD, 1356–1357
D osteolytic response/hypercalcemic effects in, 569
EAE v. 1,25(OH)2D3, 1784
factors affecting, 27
high dose intermittent 1,25(OH)2D3, 1743, 1743t
increased serum phosphorus associated with, 1177–1178
mechanisms of D, 1362–1368
1,25(OH)2D3, 1357
1,25(OH)2D3 concentration v., 1008
overview, 26
PCa treatment v. 1,25(OH)2D3, 1689–1690
pharmacological issues of safety and, 1007–1010
psoriasis treatment v., 1791
radiology of, 986, 988f
synthetic analog, 1357–1359
thresholds in adults/infants, 1357
topically applied/systemically administered D compound, 1450

TPN. See Total parenteral nutrition
TPTX dogs. See Thyroparathyroidectomized dogs
Trabecular bone pattern factor, in bone structure assessment, 962
TRAF family proteins. See TNF receptor-associated factor family

proteins
Transactivation

coregulators in VDR/RXR, 180–181
HVDRR cell lines suppressing RXR-VDR-mediated, 354f, 

355–356
1,25(OH)2D3-liganded VDR-RXR, 237–243, 239f
REBiP squelching hormone-directed, 358, 358f
RXR’s direct involvement in, 181
squelching VDR-directed VDRE-reporter-driven, 355, 355f

Transcaltachia
cell-surface receptor in analog-stimulated, 1461
structure-function summary analysis, 397, 397t

Transcription apparatus, REBiP in, 358, 358f
Transcription factors (TFs)

intranuclear pathways directing, 335–336
in 1,25(OH)2D3-induced differentiation, 1639–1640
osteoblast differentiation status varying, 653
as regulatory component scaffolding, 332–333

Transcription start sites (TSSs), 1,25(OH)2D3 target gene VDREs
near, 314, 315f, 316t

Transforming growth factor (TGF), in 1,25(OH)2D3 actions on
prostate cells, 1692–1693

Transient Receptor Potential (TRP) channel superfamily, Ca2+

influx v., 430
muscle, 892–893, 892f

Transient Receptor Potential Vanilloid (TRPV) family, Ca influx v.
TRPV5/TRPV6 members of, 430

Translation, hnRNPs as ribosome recognition proteins in, 359
Transport receptors

in nucleocytoplasmic VDR/RXR trafficking, 365–376
Ran-GTPase regulating, 365–366, 367f

TRAP coactivator complex. See Mediator-D coactivator complex
TRP channel superfamily. See Transient Receptor Potential channel

superfamily
TRPV5. See ECaC1
TRPV6. See ECaC2
TRPV family. See Transient Receptor Potential Vanilloid family
TSSs. See Transcription start sites
Tuberculosis

D3 preventing, 999t
extrarenal D metabolite overproduction v., 1390–1391, 1390t
hypercalcemia/D hypersensitivity in, 1360
VDR polymorphisms v., 1148

Tumor cells
D influences on, 1577–1582
D influencing, 1577–1582
D resistance/metabolism in, 1583–1584
1,25(OH)2D3 stimulating proliferation of, 1574t, 1584–1585,

1585f
Tumor-induced osteomalacia (TIO), 463t, 468, 983–984

benign/malignant tumors in, 983, 986f
as disorder of phosphate metabolism, 1190–1192
genes overexpressed in, 1192
phosphatonin secretion resulting in, 1190
tumors eluding detection in, 983–984, 989f

Tumor necrosis factor (TNF)
causing apoptosis v. calbindin-D28K/osteoblasts, 725, 725f
type I collagen synthesis inhibited by, 704

Tumor necrosis factor (TNF) receptor family
nomenclature, 674, 675f
OPG in, 668

Tumor suppressor genes
in cell cycle/apoptosis control, 1577–1580
1,25(OH)2D3/EB1089 regulating breast cancer cell, 1664–1665
1,25(OH)2D3 regulating expression of, 1579

Tumoral calcinosis (TC), hyperphosphatemic, 1175–1176
Tumors

D/analogs differentially influencing canine/human, 1577
D preventing colon, 1709–1710
1,25(OH)2D3/1,25(OH)2D3 analogs v., 1741
1,25(OH)2D3 stimulating development of, 1574t, 1584–1585,

1585f
prognosis v. VDR expression in breast cancer, 1668
VDR in, 1572t
VDR-RXR heterodimer-activating ligands v., 241
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Turks
serum 25OHD/PTH in dark-skinned Dutch, 794
sunlight exposure v. rickets in, 1066–1067
sunlight exposure v. serum 25OHD in, 794

Type II nitric oxide synthase (NOS II), 1,25(OH)2D3 v., 1783

U
UL. See Upper limit
Ultraviolet (UV) light

age/serum D v., 823, 824f
PCa mortality v., 1601–1602, 1602f, 1603f
PCa v., 1605–1606
rickets v., 565
serum 25OHD directly related to, 825

Upper limit (UL), conservative safety margin of, 1008
Uremia, 1,25(OH)2D3/VDR-mediated transcription v., 1320–1321,

1321f
Uterus

calbindin-D9K/D28K in, 726, 730t
D in, 856–857
PTHrP expression in, 739t

3’UTR polymorphisms, 1131t–1132t, 1135–1137
BAt/baT haplotype expression in, 1131t–1132t, 1135

UV light. See Ultraviolet light
UVB

in combination psoriasis therapy, 1504, 1504t
as D3 dose, 1006–1007
D status in elderly improved by, 1087

V
Vascular calcification, 899

calcitropic hormones v., 904–905
D regulating, 904–905
overview, 904
regression v. treatment, 979

Vascular endothelial growth factor (VEGF) gene, 1,25(OH)2D3

targeting, 566, 567
Vascular inflammation, D signaling in regulating, 899
Vascular smooth muscle cells (VSMCs)

1,25(OH)2D3 actions in, 902–903
1α,25(OH)2D3 promoting migration of, 395–397, 396f

Vasculature, direct D actions in, 902–904
Vasopressin. See Antidiuretic hormone
VDCCs. See Voltage-dependent calcium channels
VDR. See Vitamin D receptor
VDR gene, 182–184

arrangement, 1210, 1211f
complexity v. polymorphism identification, 1125f, 1129
defects causing HVDRR, 1207
exon-intron structure/polymorphism position, 1124, 1125f
gene deletion prematurely terminating, 1222
genomic mapping to chromosome 12q13.1, 1122, 1123f
haplotype importance in, 1135–1137, 1136f
HVDRR caused by mutated, 111
LD measured across, 1125f, 1127
LD strength display across Caucasian, 1127, 1128f
locus, 194–201

structure, 194–195, 195f
nephrolithiasis v., 1142
odontoblasts expressing, 599
organization, 182–183, 183f
polymorphism association analysis in disease states, 1137–1148

VDR gene (Continued)
polymorphism in human, 172, 183–184, 200–201, 200f, 244f

disease risk/functional consequences v., 243–246
ethnic variation v., 1127–1129, 1128t
undiscovered/functionally significant, 245

polymorphisms/1α-hydroxylase v. PCa, 1626–1627
polymorphisms associated with cancer, 1572–1573
polymorphisms v. colorectal cancer/adenoma, 1619–1620
polymorphisms v. disease risk, 1121–1149
polymorphisms v. sequence comparisons, 1124–1126, 1125f
premature termination v. HVDRR-related mutations, 1220–1222
promoters v. D analog selectivity, 1452f, 1453
12q13 locus, genomic structure, 1122, 1123f, 1124f
RFLPs, 1124, 1125f
sequence variations near anonymous markers, 1125f, 1135
splice site mutations prematurely terminating, 1222

Glu92fs, 1221f, 1222
Leu233fs, 1221f, 1222

stop mutations prematurely terminating, 1220–1222, 1221f
Arg30stop, 1221–1222, 1221f
Arg73stop, 1221, 1221f
Gln152stop, 1221, 1221f
Gln317stop, 1221f, 1222
Tyr295stop, 1220, 1221f
Tyr295stop ochre, 1214t–1216t, 1220–1221

structural complexity, 193
structure, 194–196
structure/polymorphisms, 1122–1137
study size v. analysis of, 1137–1138

VDR homodimers
D analog selectivity v., 1454–1455
RXR-independent 1,25(OH)2D3 signaling v., 319

VDR promoters, 196–200
human, 197–200, 198f, 199f
nonhuman, 197, 198f
targeting VDR through chromatin remodeling complex, 305–312,

306f
VDR-RXR heterodimers

9-cis RA stimulating, 241
allosteric model of, 235–237, 236f
cyclic model for transactivation by 1,25(OH)2D3-liganded, 

237–243, 239f
limits of, 241

cytoplasmic dimerization of, 369, 371f
D ligands influencing DNA interaction with, 1455
DNA binding v. hexameric core binding motifs, 319
DNA complex formation of, 318f
everted repeats, 317–319, 318f
FRET experiments showing cytoplasmic, 364–365, 365f
hVDR∆ in, 281
intestinal CYP enzymes regulated by, 246–248, 247f
Mediator-D complex interacting with, 296, 296f
1,25(OH)2D3 signaling mediated by, 319
in 1,25(OH)2D3/VDR control of D responsive genes, 1320, 1320f
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