Randomized Trial of Vitamin D3 & Calcium Supplementation to Reduce Risk of Cancer

> Joan Lappe, PhD, RN, FAAN Criss/Beirne Endowed Chair in Nursing Professor of Medicine

> > Creighton University Omaha, Nebraska

Solar Radiation and Cancer Mortality

 1941 Apperly - Cancer mortality higher in northern than in southern US states.

Apperly, Cancer Research Vol 1, No 1 (1941); 1934–1938 health statistics

 1989 Garland – Colon cancer mortality higher in the northeastern US than in the south.

Garland, 1989, Lancet 2.

Solar Radiation and Cancer Mortality

An inverse correlation between cancer death rates and sunlight exposure has been found for numerous cancers. Some of them include:

breast ovary colon lung rectum pancreas prostate uterus stomach kidney bladder esophagus thyroid multiple myeloma

> Grant W. Cancer 2002;94 Holick M. Prog Biophysics Mol Biol 2006;92: Giovannucci E. Cancer Causes and Control 2005;16

Risk of Fatal Cancer by Quartile of 250HD

- German men and women
- Referred for coronary angiography
- Age 62±10 yrs
- 3162 cases and 95 controls
- 1997-2000
- Median follow up of 7.5 yrs
- Death due to cancer confirmed by death certificates

Pilz et al, 2008

Serum 25(OH)D & Prostate Cancer

- 13 yr longitudinal study
- 19,000 men
- 149 cases prostate CA

Ahonen et al., 2000

Serum 25(OH)D & Prostate Cancer

those with the lowest 25(OH)D level were 70% more likely to develop prostate CA than those in the highest quartile.

Risk of Breast Cancer by Quintile of 250HD

- German women aged 50-74
- Postmenopausal
- 1394 cases and 1365 controls
- 2002-2005
- Histologically confirmed primary invasive or *in situ* breast cancer

Abbas et al., 2007

COLORECTAL CANCER

- Nurses' Health Study
- ages 46–78
- nested case-control study
- 193 incident cases

Feskanich et al., Cancer Epidemiol Biomarkers Prev 2004 13:1502–08

25(OH)D Quintiles (with medians*) *nmol/L

• The preponderance of evidence from ecological, cohort, and case control studies supports an anticancer effect of vitamin D.

- However, there were studies that did not find the effect.
- A few studies showed an increased risk of cancer with higher serum 25OHD levels.

Risk of Prostate Cancer by Quintile of 25(OH)D Example of the U-shaped Curve

Nested Case-Control Study in Nordic Men (622 cases and 1451 controls)

Tuohimaa et al. Int J Cancer 108: 104-108, 2004

Randomized Clinical Trials

Women's Health Initiative (WHI)

36,282 women randomly assigned to 400 IU vitamin D3/d and 1000 mg calcium/d or placebo for both

Primary outcome – fracture; secondary outcome colorectal and breast cancer No effect of vitamin D intervention on cancer incidence

- Vitamin D₃ dose 400 IU
- Poor treatment adherence
- 15% of placebo subjects crossed into the active group by taking their own supplements
- 58% of subjects were assigned to hormone replacement therapy in the study

WHI did find a highly significant inverse association between baseline 25OHD and incident colon cancer. Risk for lowest quartile was 2.5 times greater than highest quartile.

Cumulative survival according to treatment with vitamin D (n=1345) or placebo (n=1341)

- 2686 British men and women
- RCT
- Vit D3 100,000 IU q 4 mos/5 yrs (~800 IU/d)
- Vit D3 had no effect on overall survival or cancer survival

probability of surviva Vitamin D -----Placebo 0.9 0.8 0.7 10 20 30 50 60 70 0 40 Months

Trivedi et al 2003

Randomized Trial of Vitamin D3 & Calcium Supplementation and All-type Cancer

Specific Aims

- Primary : to determine the anti-fracture efficacy of supplementation with calcium or calcium and vitamin D in a population of older women.
- Secondary: to determine the efficacy of supplementation in reducing incident cancer risk of all types.

Lappe et al. Am J Clin Nutr 2007

Funded by the National Institute of Aging

Randomized Trial of Vitamin D3 & Calcium Supplementation and All-type Cancer

Random sample of the population

N = 1179 post-menopausal women

Ages 55-89

Randomized, double-blind, placebo-controlled

Four yrs duration

Three groups

- 1. Calcium 1400-1500 mg/d
- 2. Vitamin D3 1100 IU/d plus calcium
- 3. Placebo for both

Target Population

- Healthy women in a nine-county rural Nebraska area
- At least four years postmenopausal
- 55 years of age and older
- Any ethnic background
- Living independently

Population-Based Study

- In human clinical studies, we want to make inferences from the sample about the population from which the sample is derived.
- Convenience samples are more likely to have unknown biases that render the sample different than the population.
- Probability sampling is the best way to obtain a sample that is representative of the population.
- Simple random sampling is the easiest form of probability sampling; each individual has an equal probability of being selected for the sample.

Simple Random Sampling

Midwest Survey and Research (MSR), a market research firm:

- used a complete list of telephone numbers for target area
- randomly selected numbers from all households with listed telephone numbers and called them to do an initial telephone screen.
- continued calling until 1179 women were selected who met the inclusion and exclusion criteria and were willing to participate in this four year study.
- reported 96,301 dialings and 27,713 persons contacted.

Exclusion Criteria

- History of cancer <u>except</u>
 - a) superficial basal or squamous cell carcinoma of the skinb) other malignancies treated curatively more than 10 years ago
- History of chronic kidney disease or renal calculi
- Diagnosis of Paget's metabolic bone disease

Measurements

Annually

- Serum 25OHD (RIA –IDS, Fountain Hills AZ) Our lab participates in the international quality assessment by DEQAS.
- A sample of each lot of vitamin D3 was analyzed at the beginning and end of each year to assure potency.

Semiannually

- Supplement compliance
- Review of medical status & meds.
 Cancer cases were validated by medical records.

Baseline and end of study

Dietary assessment

Adherence

- Mean adherence (defined as $\ge 80\%$ of assigned doses) 86% for vitamin D
- 74% for calcium.

Of the 1179 women enrolled, 1024 (86.8%) completed the study.

Subject Characteristics by Treatment Group

Variable	Placebo	Calcium	Calcium/D
	N=288	N=445	N=446
Age (yrs)	66.1±6.8	66.5±7.2	67.3±7.7
Height (m)	1.63±0.06	1.63±0.06	1.62±0.06
Weight (kg)	76.2±14.7	77.7±16.0	75.8±15.0
Body mass index (wt/ht ²⁾	28.8±5.5	29.4±5.9	28.8±5.5
Diet calcium intake (mg/d)	699±415	692±388	662±397
Total calcium intake (mg/d)	1062±588	1058±597	1020±559

Baseline and 12-month Serum 25OHD (nmol/L - ng/mL)

	Baseline (mean ± S.D)	12 months (mean ± S.D)	Change (mean ± S.D)
Placebo	$\begin{array}{c} 72.1 \pm 20.7 \\ 28.8 \pm 8.3 \end{array}$	$\begin{array}{l} 71.1 \pm 19.8 \\ 28.4 \pm 7.9 \end{array}$	$\begin{array}{l} -0.23 \pm \! 14.7 \\ -0.09 \pm 5.9 \end{array}$
Calcium only	71.6 ± 20.5 28.6 ± 8.2	$\begin{array}{c} 71.0 \pm 20.3 \\ 28.4 \pm 8.1 \end{array}$	-0.74 ±13.0 -0.30 ± 5.2
Calcium plus D	$\begin{array}{c} 71.8 \pm 20.0 \\ 28.7 \pm 8.0 \end{array}$	$\begin{array}{c} 96.0 \pm 21.4 \\ 38.4 \pm 8.6 \end{array}$	$\begin{array}{r} +23.9 \pm 17.8 \\ 9.6 \pm 7.1 \end{array}$

25(OH)D in Older Women in Nebraska at Baseline

- women aged 55 & older
- latitude 41° N
- 25(OH)D values adjusted for season
- median vit D
 supplement dose = 200 IU

Lappe et al., JACN 2006

25(OH)D in Older Women in Nebraska at Baseline

- women aged 55 & older
- latitude 41° N
- 25(OH)D values adjusted for season
- median vit D
 supplement dose =
 200 IU

Lappe et al., JACN 2006

Cancer Occurrence

Over the 4 years of study 50 women were diagnosed with cancer, 13 in the first year and 37 thereafter.

Number of Cancers by Site and Treatment Group

Anatomical Site	Placebo	Calcium	Vitamin D plus Calcium
	n = 288	n = 445	n = 446
Breast	8	6	5
Colon	2	0	1
Lung	3	3	1
Lymph/Leukemia/Myeloma	4	4	2
Uterus	0	2	1
Other	3	2	3
Total	20 (6.9%)	17 (3.8%)	13 (2.9%)

Kaplan-Meier survival curves (i.e., free of cancer) for the 3 treatment groups in the entire cohort of 1,179 women.

Kaplan-Meier survival curves for the 3 treatment groups in the cohort of women free of cancer at 1 year of intervention (n = 1,085).

Results (cont)

Logistic regression models were developed to explore determinants of cancer incidence.

- 12-month 25OHD (P < 0.002)
- Baseline 250HD (P < 0.03)
- Treatment and 12 month 25OHD level only 25OHD was a significant predictor (R² = 0.037; P < 0.05)
- Treatment and baseline 25OHD both were significant predictors (R² = 0.055; P < 0.05).
- Neither age or BMI was a significant predictor.

Study Limitations/Strengths

- Primary outcome was antifracture efficacy
- Small sample size compared to many cancer studies
- + Population-based study with few exclusion criteria
- + Rigorous design (double-blind, randomized, placebo-control)
- + High adherence to supplement regimen
- + Low dropout rate

Our study is the first to report the effects of vitamin D status on <u>all-cancer</u> incidence.

It is also the first randomized clinical trial that used a vitamin D intervention sufficient to raise serum 250HD to optimum levels and that targeted a cancer outcome.

World Health Organization International Agency for Research on Cancer

"The statistical analysis of the Nebraska trial was not correct.

- For instance, subjects that received (Ca only) had a decrease in cancer risk of similar magnitude to subjects receiving (Ca + D). Thus a correct intent to *threat* analysis comparing the (Ca + D) group with (Ca only pooled with placebo) shows no significant decrease in cancer risk.
- In contrast, an intent to *threat* analysis of (Ca + D pooled with Ca only) versus placebo shows a significant reduced cancer risk due to calcium supplements.
- The methodology and statistical analysis of this trial have been much criticised (Sood *et al.*,2007; Bolland *et al.*,2007; Ojha *et al.*,2007; Shabas *et al.*,2008). For instance, the cancer incidence was unusually high in the placebo group, a bias that undermined the trial's findings (Shabas *et al.*,2008). In conclusion, the design of the Nebraska trial was biased, and its results were negative for vitamin D."

Vitamin D and Cancer. IARC Working Group Reports Vol.5, Lyon, 25 November 2008.

Summary

- A variety of research designs, other than randomized clinical trials, provide evidence that vitamin D decreases risk of cancer.
- One randomized controlled trial with all-type cancer as a secondary outcome reported a 60% reduction in cancer incidence in older women.
- However, many members of the scientific community, including the International Agency for Research on Cancer, find the data lacking support for a causative effect.
- In addition, there are concerns about safety of consistently "high" levels of 25(OH)D over a long period of time.
- Two randomized trials, funded by the NIH, are currently in progress designed to run 4 and 7 years, respectively.

Vitamin D: The Sunshine Vitamin

