Loading...
 
Toggle Health Problems and D

Vitamin D deficiency is associated with 35 genes, only 7 of are commercially tested – Nov 2019

Identification and analysis of 35 genes associated with vitamin D deficiency: A systematic review to identify genetic variants.

J Steroid Biochem Mol Biol. 2019 Oct 30:105516. doi: 10.1016/j.jsbmb.2019.105516
Image

Tiny portion of Figure 4

Image

VitaminDWiki

The story of the Human Body -excellent book by Daniel Lieberman

Many reasons why vitamin D deficiency has become epidemic has a chart updated Oct 2019
http://www.vitamindwiki.com/tiki-index.php?page_id=1586
Poor responses to UV and Vitamin D were correlated to just 4 poor genes – June 2019

Genetics category listing contains the following

307 articles in the Genetics category

see also

Vitamin D blood test misses a lot
Blood Test Misses a lot (VDW 3439)

  • Vitamin D from coming from tissues (vs blood) was speculated to be 50% in 2014, and by 2017 was speculated to be 90%
  • Note: Good blood test results (> 40 ng) does not mean that a good amount of Vitamin D actually gets to cells
  • A Vitamin D test in cells rather than blood was feasible (2017 personal communication)
  •    Commercially available 2019
    • However, test results would vary in each tissue due to multiple genes
  • Good clues that Vitamin D is being restricted from getting to the cells
    1) A vitamin D-related health problem runs in the family
    2) Slightly increasing Vitamin D shows benefits (even if conventional Vitamin D test shows an increase)
    3) Vitamin D Receptor test (<$30) scores are difficult to understand in 2016
    • easier to understand the VDR 23andMe test results analyzed by FoundMyFitness in 2018

    4) Back Pain

One gene restricts how much Vit. D acually gets to cells (not just reduce blood level)

The risk of 44 diseases at least double with poor Vitamin D Receptor as of Oct 2019
Vitamin D Receptor Activation can be increased by any of:
Resveratrol, Omega-3, Magnesium, Zinc, non-daily Vitamin D dosing, etc
   Note: The founder of VitaminDWiki uses 10 of the 12 known VDR activators

Vitamin D Receptor and Cancers

Vitamin D Receptor pages with CANCER in title (75 as of Sept 2022)
This list is automatically updated

Items found: 80
Title Modified
Breast cancer spreads to bone if poor vitamin D Receptor (no surprise) – Oct 2022 31 Oct, 2022
2X more Thyroid Cancer malignancy if less than 15 ng of vitamin D – June 2012 16 Sep, 2022
Cancers are associated with low vitamin D, poor vaccination response and perhaps poor VDR – July 2022 15 Aug, 2022
Poor prognosis of solid childhood cancers 14.7 X more likely with a poor Vitamin D Receptor – July 2022 27 Jul, 2022
Breast Cancer, Vitamin D, and genes – Welsh Nov 2021 09 Feb, 2022
How cancer is fought by Vitamin D (Ovarian this time) - Feb 2020 01 Nov, 2021
Lung Cancer is up to 7 X more deadly if poor vitamin D genes – Oct 2021 25 Oct, 2021
Cancers and Vitamin D Receptors, including change with race – Feb 2021 24 Oct, 2021
Breast Cancer reduces receptor and thus blocks Vitamin D to the cells – several studies 18 Oct, 2021
After lactation Vitamin D levels are low, increased risk of Breast Cancer, vitamin D should decrease risk – Aug 2021 20 Aug, 2021
Breasts process Vitamin D and change gene activation, might prevent breast cancer if given more Vit. D – July 2021 10 Jul, 2021
Vitamin D Receptor and Cancer 17 Feb, 2021
Oral Cancers - increased risk if low vitamin D or poor vitamin D genes 22 Jan, 2021
Colon cancer risk increases 30X if you have the worst vitamin D receptor mutation – Jan 2021 15 Jan, 2021
Book: Sunlight, UV, Vitamin D and Receptor, Skin and other Cancers - Dec 2020 09 Dec, 2020
Colorectal Cancer Patients 2.4 X more likely to have poor Vitamin D receptors (less D to cells) – April 2020 02 May, 2020
Colorectal cancer linked to poor Vitamin D Receptor (yet again) – Jan 2020 22 Jan, 2020
8 ways that Cancer might be prevented by Vitamin D - June 2019 26 Dec, 2019
Liver Cancer – higher risk if poor genes (Vitamin D receptor etc) – meta-analysis Dec 2019 14 Dec, 2019
Prostate Cancer associated with various genes, including Vitamin D Receptor and CYP24A1 – Nov 2019 15 Nov, 2019
Risk of Cancer increased if poor Vitamin D Receptor – meta-analysis of 73 studies Jan 2016 09 Nov, 2019
Cancer is leading cause of death - Vitamin D and Receptor activators help 09 Nov, 2019
Melanoma cancer growth slowed by increased Vitamin D Receptor (yet again) – Oct 2019 06 Nov, 2019
Breast cancer associated with Vitamin D Receptor (14th study) – Oct 2019 19 Oct, 2019
Colorectal Cancer risk increases when genes reduce the vitamin D levels – Aug 2019 23 Aug, 2019
Breast Cancer death 1.8 X more likely if poor Vitamin D Receptor – April 2019 29 Jul, 2019
Blood cell cancer is associated with a 3X worse Vitamin D Receptor – June 2019 14 Jun, 2019
Lung Cancer more likely if poor Vitamin D Receptor – meta-analysis June 2019 13 Jun, 2019
After breast cancer treatment 4,000 IU of Vitamin D was not enough to help if have poor Vitamin D receptor – June 2019 04 Jun, 2019
Effects of Resveratrol against Lung Cancer in mice – Nov 2017 28 Apr, 2019
The Role of Resveratrol in Cancer Therapy – Dec 2017 27 Apr, 2019
Good Vitamin D receptor reduced bladder cancer and cisplatin deaths – April 2019 11 Apr, 2019
A poor Vitamin D Receptor is associated with many cancers (oral cancer in this case) – Jan 2019 26 Mar, 2019
Breast Cancer and Vitamin D review – March 2018 17 Mar, 2019
Overview of Vitamin D Actions in Cancer – 31 page chapter in a book – 2018 15 Mar, 2019
Women with Breast Cancer were 16.9 times more likely to have a poor Vitamin D Receptor – Jan 2019 11 Feb, 2019
Risks of Colorectal Cancer, IBD, etc slightly increased if poor Vitamin D Receptor – Aug 2018 09 Dec, 2018
Ovarian Cancer risk reduced if higher vitamin D, more UVB, or better vitamin D receptor – Nov 2018 10 Nov, 2018
Cancer treatment by Vitamin D sometimes is restricted by genes – Oct 2018 01 Nov, 2018
Brain cancer in 175 countries related to low UVB and low vitamin D – Oct 2010 03 Oct, 2018
Pancreatic Cancer – live a year longer if have high vitamin D and good Vitamin D Receptor – Aug 2018 15 Aug, 2018
Endometriosis, Endometrial Cancer, and poor Vitamin D or Receptor – Aug 2018 08 Aug, 2018
Risk of colon cancer increases in mice with no Vitamin D receptor in colon - July 2018 07 Jul, 2018
Vitamin D receptor is essential for both normal and cancerous cells in the lab – June 2018 16 Jun, 2018
Active Vitamin D reduces Ovarian Cancer stem cells growth by 4X (via Vitamin D receptor in lab rat) – March 2018 28 Mar, 2018
Two chemicals increase the Vitamin D receptor and decrease the growth of breast cancer cells in the lab - March 2018 17 Mar, 2018
Ovarian Cancer in Asia is 1.5 X more likely if poor Vitamin D receptor – meta-analysis Dec 2017 14 Dec, 2017
Nonmelanoma Skin Cancer 2X more likely if poor Vitamin D Receptor – Oct 2017 19 Oct, 2017
Cancer and the Vitamin D Receptor, a primer – Sept 2017 01 Oct, 2017
Thyroid Cancer rate has increased 3X in 3 decades, Vitamin D Receptor decreases, Calcium increases – Aug 2017 26 Aug, 2017
Advanced Colon Cancer risk is doubled or halved with 1000 IU of Vitamin D, depends on Vitamin D Receptors – RCT May 2017 19 Aug, 2017
Cancer risks and Vitamin D Receptors – association is unclear – 2017 19 Aug, 2017
Increased Breast Cancer metastasis if low vitamin D or poor VDR – Feb 2016 09 Aug, 2017
Colon Cancer survival 3.1 X less likely if poor Vitamin D Receptor – Aug 2017 02 Aug, 2017
Lung Cancer patients were 2.4 times more likely to have a poor Vitamin D Receptor gene – July 2017 27 Jul, 2017
Pancreatic Cancer massively deregulates the local Vitamin D receptors and CPY24A1 – July 2014 25 Jul, 2017
Gastric Cancer 2.7 X more likely if poor Vitamin D Receptor (Chinese) – 2015 15 Jun, 2017
Skin Cancers, Vitamin D, Vitamin D Receptor and Genes – Jan 2015 17 Mar, 2017
Prostate cancer in black men is 1.6 times more likely if a poor Vitamin D Receptor – Feb 2017 06 Mar, 2017
2X more likely to survive a form of esophageal cancer in China if have good vitamin D receptor – Feb 2017 04 Mar, 2017
Urinary Bladder Cancer survival is associated with vitamin D receptor: 14 months vs 53 months – Oct 2015 02 Mar, 2017
Vitamin D receptor as a target for breast cancer therapy (abstract only) – Feb 2017 01 Mar, 2017
Ovarian Cancer 5.8 X more likely if both low vitamin D and Fok1 gene change – May 2013 27 Feb, 2017
Vitamin D receptor may suppress skin cancer – Dec 2013 27 Jan, 2017
Aggressive Prostate Cancer in blacks with low vitamin D – 7X more likely if added Calcium – Jan 2017 28 Dec, 2016
Breast Cancer was 4.6 times more likely if have a poor Vitamin D Receptor – Dec 2016 06 Dec, 2016
Vitamin D, Vitamin D Receptor and Cancer – Nov 2016 05 Dec, 2016
High PSA readings with Prostate Cancer 4 times more likely if poor Vitamin D receptor – March 2016 14 Nov, 2016
2X less prostate cancer in A-A with low Calcium is due vitamin D receptor gene – July 2013 14 Nov, 2016
Vitamin D receptor polymorphisms are risk factors for various cancers – meta-analysis Jan 2014 12 Nov, 2016
10 percent of colon cancer linked to Vitamin D Receptor – meta-analysis April 2012 23 Sep, 2016
Vitamin D Receptor role in Autoimmune Diseases and or cancers – Nov 2013 17 Mar, 2016
Skin cancer 20 percent more likely with some Vitamin D receptor gene polymorphisms – Oct 2015 06 Jan, 2016
Pancreatic Cancer treatment by calcipotriol (a synthetic vitamin D) improves outcome by 57 percent – Sept 2014 13 Dec, 2015
Poor Bladder Cancer survival associated with poor Vitamin D receptor – Oct 2015 18 Oct, 2015
Increased risk of some female cancers if low vitamin D (due to genes) – meta-analysis June 2015 03 May, 2015
Free vitamin D (VDR) may be more important than total for bladder cancer – March 2013 06 Jan, 2014
Genes breast cancer and vitamin D receptor - Sept 2010 08 Jul, 2013
Breast Cancer incidence change by 40 percent with vitamin D receptor genes – Oct 2012 08 Jul, 2013
Vitamin D receptor in breasts and breast cancer vary with race – March 2013 08 Jul, 2013

 Download the PDF from VitaminDWiki

Sepulveda-Villegas M1, Elizondo-Montemayor L2, Trevino V3.

  • 1 Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Bioinformatics Research Group, Ave. Morones Prieto 3000, Colonia Los Doctores, Monterrey, Nuevo León 64710, Mexico.
  • 2 Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Bioinformatics Research Group, Ave. Morones Prieto 3000, Colonia Los Doctores, Monterrey, Nuevo León 64710, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Center for Research in Clinical Nutrition and Obesity, Ave. Morones Prieto 3000, Colonia Los Doctores, Monterrey, Nuevo León 64710, Mexico; Tecnologico de Monterrey, Cardiovascular and Metabolomics Research Group, Hospital Zambrano Hellion, San Pedro Garza Garcia, P.C., 66278, Mexico.
  • 3 Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Bioinformatics Research Group, Ave. Morones Prieto 3000, Colonia Los Doctores, Monterrey, Nuevo León 64710, Mexico. Electronic address: vtrevino at tec.mx.

Vitamin D deficiency is a public health concern associated with, but not limited to, skeletal anomalies, chronic diseases, immune conditions, and cancer, among others. Hypovitaminosis D is mainly associated with environmental and lifestyle factors that affect sunlight exposure. However, genetic factors also influence 25-hydroxyvitamin D (25OHD) serum concentration. Although there is available information of genes with clear biological relevance or markers identified by Genome-Wide Association Studies, an overall view and screening tool to identify known genetic causes of altered serum levels of 25(OH)D is lacking. Moreover, there are no studies including the total genetic evidence associated with abnormal serum concentration of 25(OH)D.

Therefore, we conducted a de-novo systematic literature review to propose a set of genes comprehensive of all genetic variants reported to be associated with deficiency of vitamin D. Abstracts retrieved from PubMed search were organized by gene and curated one-by-one using the PubTerm web tool. The genes identified were classified according to the type of genetic evidence associated with serum 25(OH)D levels and were also compared with the few commonly screened genes related to vitamin D status. This strategy allowed the identification of 35 genes associated with serum 25(OH)D concentrations, 27 (75%) of which are not commercially available and are not, therefore, analyzed in clinical practice for genetic counseling, nor are they sufficiently studied for research purposes. Functional analysis of the genes identified confirmed their role in vitamin D pathways and diseases.

Thus, the list of genes is an important source to understand the genetic determinants of 25(OH)D levels. To further support our findings, we provide a map of the reported functional variants and SNPs not included in ClinVar, minor allelic frequencies, SNP effect sizes, associated diseases, and an integrated overview of the biological role of the genes. In conclusion, we identified a comprehensive candidate list of genes associated with serum 25(OH)D concentrations, most of which are not commercially available, but would prove of importance in clinical practice in screening for patients that should respond to supplementation because of alterations in absorption, patients that would have little benefit because alterations in the downstream metabolism of vitamin D, and to study non-responsiveness to supplementation with vitamin D.


Created by admin. Last Modification: Wednesday July 1, 2020 12:54:05 GMT-0000 by admin. (Version 12)

Attached files

ID Name Comment Uploaded Size Downloads
13968 Analysis of 35 Genes.pdf PDF 2020 admin 01 Jul, 2020 12:52 4.54 Mb 317
12947 36 gene portion of F4.jpg admin 10 Nov, 2019 02:31 53.89 Kb 375
12946 36 genes.jpg admin 10 Nov, 2019 02:31 170.73 Kb 434
See any problem with this page? Report it (WORKS NOV 2021)