Toggle Health Problems and D

The Role of Vitamin D in Supporting Health in the COVID-19 Era – March 25, 2022


Int. J. Mol. Sci. 2022, 23(7), 3621; https://doi.org/10.3390/ijms23073621
by Alice Albergamo †,Giulia Apprato † and Francesca Silvagno *ORCID
Department of Oncology, University of Torino, 10126 Torino, Italy

The genomic activity of vitamin D is associated with metabolic effects, and the hormone has a strong impact on several physiological functions and, therefore, on health. Among its renowned functions, vitamin D is an immunomodulator and a molecule with an anti-inflammatory effect, and, recently, it has been much studied in relation to its response against viral infections, especially against COVID-19. This review aims to take stock of the correlation studies between vitamin D deficiency and increased risks of severe COVID-19 disease and, similarly, between vitamin D deficiency and acute respiratory distress syndrome. Based on this evidence, supplementation with vitamin D has been tested in clinical trials, and the results are discussed. Finally, this study includes a biochemical analysis on the effects of vitamin D in the body’s defense mechanisms against viral infection. In particular, the antioxidant and anti-inflammatory functions are considered in relation to energy metabolism, and the potential, beneficial effect of vitamin D in COVID-19 is described, with discussion of its influence on different biochemical pathways. The proposed, broader view of vitamin D activity could support a better-integrated approach in supplementation strategies against severe COVID-19, which could be valuable in a near future of living with an infection becoming endemic.
 Download the PDF from VitaminDWiki

Table of many trials (from supplementary material)

 Download the table from VitaminDWiki

Concluding Remarks on Vitamin D Supplementation in COVID-19

The comparison between existing studies is made difficult by the heterogenous patient populations and the differences in treatment protocols. As was highlighted in Section 6.1, due to personal sensitivity to vitamin D activity, it is difficult to establish the proper dosage for an effective treatment of a whole cohort of patients; for this reason, the highest dose of hormone is probably the most appropriate choice, although the negative calcemic effects should be carefully evaluated, and non-calcemic analogs should be tested. It should be noted, however, that a large bolus of vitamin D may have minimal benefit or could even be counterproductive, whereas moderate daily doses in individuals at risk of deficiency would be more beneficial, as highlighted in most recent meta-analyses and reviews [158,159]. In addition to dosage and duration of treatment, it is important to assess the form of the metabolite administered. Cholecalciferol, native vitamin D3, is the most widely tested form due to its large availability and low cost, particularly in developing countries, as well as its relatively safe side-effect profile [144]. On the other hand, calcifediol appears to have advantages over cholecalciferol. Indeed, it does not require hepatic 25-hydroxylation, which can be hampered by liver overload; it has a more reliable intestinal absorption (close to 100%) and can rapidly restore serum concentration of 25(OH)D3 [150]. The advantage of calcidiol administration was reported in osteoporotic patients [160]. Furthermore, the best route of administration and early treatment must be considered, taking into account the clinical characteristics of the patients, baseline 25(OH)D3 levels, and outcome measurement [140,161]. Although some studies considered serum 25(OH)D3 as a negative acute-phase reactant [162], nonetheless, supplementation with the hormone was found to be generally helpful in COVID-19 outcomes. Further, large-scale population studies are needed to confirm the beneficial effects of vitamin D in reducing disease severity and in preventing infection.

Summary of reported mechanisms and targets

  1. Viral entry is hampered; the computational study by Song et al. demonstrated that the interaction of 1,25(OH)2D3 with the SARS-CoV-2 spike RBD (receptor-binding domain) causes a change in the dynamic movement of the binding surfaces between the SARS-CoV-2 RBD and the ACE2 that disrupts their binding [167]. In addition, it was seen that vitamin D and its hydroxyl derivatives bind the active site of TMPRSS2 (the transmembrane serin protease with the function of priming the spike protein) and inhibit SARS-CoV-2 RBD binding to ACE2 to prevent SARS-CoV-2 entry. Moreover, calcitriol downregulates the transcription of ACE2 codifying gene [168].
  2. A recent proteomic study identified 332 human protein targets of the 27 viral proteins [169]. The investigation, carried out by genomics-guided tracing of SARS-CoV-2 targets in human cells, showed that vitamin D alters the expression of 84 genes out of 332 (25%) genes, encoding human proteins prey of 19 viral proteins. These observations suggest that vitamin D, in addition to the inhibition of ACE2 gene expression, may potentially interfere with the functions of 19 out of 27 (70%) SARS- CoV-2 proteins [168]. These analyses support the possibility that vitamin D and VDR are putative mitigation factors of the coronavirus infection.
  3. Virus-triggered RAS imbalance is restored; active vitamin D can modulate the expression of the members of the RAS system in different pathological conditions where the system is altered [93,94,97,170,171]. In fact, in vitro analysis conducted on LPS-treated murine lung cells showed that high concentrations of calcitriol dramatically reduce the effects of LPS on ACE levels and decrease mRNA expression of ATR1 and AngII. Calcitriol also suppresses renin expression, resulting in the inhibition of the ACE/Ang II/AT1R cascade [97]. Moreover, in a study on obese mice, calcitriol administration attenuated acute lung injury complicated with sepsis by promoting the activity of the anti-inflammatory pathway in the RAS. This treatment induced higher ACE2 and MasR expression but lowered AT1R expression and decreased macrophage and neutrophil infiltration in the lung [170]. These studies support the conclusion that the imbalance of the RAS system correlates with the appearance of an uncontrolled inflammatory response [170] which can be reduced by active vitamin D.
  4. The redox balance is maintained; vitamin D regulates the two main players of ROS production and redox defense: NF-kB and glutathione. In COVID-19, the increased levels of AngII generated by the inhibition of ACE2 activate NF-kB, which is responsible for the release of cytokines, enzymes of inflammation, and adhesion molecules. For these reasons AngII is considered an important inflammatory mediator. On the one hand, the NF-kB signaling pathway is partially blocked by active vitamin D [172-174]. On the other hand, ROS generated by the NF-kB signaling pathway are neutralized by the vitamin-D-dependent increased glutathione biosynthesis [33,175] and by the enhanced activity of various ROS-scavenging enzymes controlled by active vitamin D [163].
  5. Mitochondrial oxidative stress is minimized; SARS-CoV-2 infection is associated with altered mitochondrial dynamics with consequent oxidative stress, which can be normalized by active vitamin D, preventing the pro-inflammatory state, cytokine production, and cell death [166]. Indeed, calcitriol through VDR plays a central role in protecting cells from excessive respiration and production of ROS that leads to cell damage [176].


  • 1. Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. https://doi.org/10.3390/nu12072097.
  • 2. Acharya, P.; Dalia, T.; Ranka, S.; Sethi, P.; Oni, O.A.; Safarova, M.S.; Parashara, D.; Gupta, K.; Barua, R.S. The Effects of Vitamin D Supplementation and 25-hydroxyvitamin D Levels on The Risk of Myocardial Infarction and Mortality. J. Endocr. Soc. 2021, 5, bvab124. https://doi.org/10.1210/jendso/bvab124.
  • 3. Mirhosseini, N.; Vatanparast, H.; Kimball, S.M. The Association between Serum 25(OH)D Status and Blood Pressure in Participants of a Community-Based Program Taking Vitamin D Supplements. Nutrients 2017, 9, 1244. https://doi.org/10.3390/nu9111244.
  • 4. McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Baggerly, L.L.; Garland, C.F.; Gorham, E.D.; Hollis, B.W.; Trump, D.L.; Lappe, J.M. Breast cancer risk markedly lower with serum 25-hydroxyvitamin D concentrations >60 vs <20 ng/mL (150 vs 50 nmol/L): Pooled analysis of two randomized trials and a prospective cohort. PLoS ONE 2018, 13, e0199265. https://doi.org/10.1371/journal.pone.0199265.
  • 5. Dawson-Hughes, B.; Staten, M.A.; Knowler, W.C.; Nelson, J.; Vickery, E.M.; LeBlanc, E.S.; Neff, L.M.; Park, J.; Pittas, A.G.; D2d Research Group. Intratrial Exposure to Vitamin D and New-Onset Diabetes among Adults with Prediabetes: A Secondary Analysis from the Vitamin D and Type 2 Diabetes (D2d) Study. Diabetes Care 2020, 43, 2916-2922. https://doi.org/10.2337/dc20- 1765.
  • 6. Carlberg, C.; Haq, A. The concept of the personal vitamin D response index. J. Steroid Biochem. Mol. Biol. 2018, 175, 12-17. https://doi.Org/10.1016/j.jsbmb.2016.12.011.
  • 7. Bikle, D. Nonclassic Actions of Vitamin D. J. Clin. Endocrinol. Metab. 2009, 94, 26-34. https://doi.org/10.1210/jc.2008-1454.
  • 8. Baeke, F.; Takiishi, T.; Korf, H.; Gysemans, C.; Mathieu, C. Vitamin D: Modulator of the immune system. Curr. Opin. Pharmacol. 2010, 10, 482-496. https://doi.org/10.1016/j.coph.2010.04.001.
  • 9. Verstuyf, A.; Carmeliet, G.; Bouillon, R.; Mathieu, C. Vitamin D: A pleiotropic hormone. Kidney Int. 2010, 78, 140-145. https://doi.org/10.1038/ki.2010.17.
  • 10. Mungai, L.N.W.; Mohammed, Z.; Maina, M.; Anjumanara, O. Vitamin D Review: The Low Hanging Fruit for Human Health. J. Nutr. Metab. 2021, 2021, 6335681. https://doi.org/10.1155/2021/6335681.
  • 11. Zhang, S.; Miller, D.; Li, W. Non-Musculoskeletal Benefits of Vitamin D beyond the Musculoskeletal System. Int. J. Mol. Sci. 2021, 22, 2128. https://doi.org/10.3390/ijms22042128.
  • 12. Ao, T.; Kikuta, J.; Ishii, M. The Effects of Vitamin D on Immune System and Inflammatory Diseases. Biomolecules 2021, 11, 1624. https://doi.org/10.3390/biom11111624.
  • 13. Samuel, S.; Sitrin, M.D. Vitamin D's role in cell proliferation and differentiation. Nutr. Rev. 2008, 66, S116-S124. https://doi.org/10.1111/j.1753-4887.2008.00094.x.
  • 14. Thompson, P.D.; Jurutka, P.W.; Whitfield, G.K.; Myskowski, S.M.; Eichhorst, K.R.; Dominguez, C.E.; Haussler, C.A.; Haussler, M.R. Liganded VDR induces CYP3A4 in small intestinal and colon cancer cells via DR3 and ER6 vitamin D responsive elements. Biochem. Biophys. Res. Commun. 2002, 299, 730-738. https://doi.org/10.1016/s0006-291x/02j02742-0.
  • 15. Koivisto, O.; Hanel, A.; Carlberg, C. Key Vitamin D Target Genes with Functions in the Immune System. Nutrients 2020, 12, 1140. https://doi.org/10.3390/nu12041140.
  • 16. Bozic, M.; Guzmán, C.; Benet, M.; Sánchez-Campos, S.; García-Monzón, C.; Gari, E.; Gatius, S.; Valdivielso, J.M.; Jover, R. Hepatocyte vitamin D receptor regulates lipid metabolism and mediates experimental diet-induced steatosis. J. Hepatol. 2016, 65, 748-757. https://doi.org/10.1016/j.jhep.2016.05.031.
  • 17. Haussler, M.R.; Jurutka, P.W.; Mizwicki, M.; Norman, A.W. Vitamin D receptor (VDR)-mediated actions of 1a,25(OH)2vitamin D3: Genomic and non-genomic mechanisms. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 543-559. https://doi.org/10.1016/j.beem.2011.05.010.
  • 18. Trochoutsou, A.I.; Kloukina, V.; Samitas, K.; Xanthou, G. Vitamin-D in the Immune System: Genomic and Non-Genomic Actions. Mini-Rev. Med. Chem. 2015, 15, 953-963. https://doi.org/10.2174/1389557515666150519110830.
  • 19. Lips, P. Vitamin D physiology. Prog. Biophys. Mol. Biol. 2006, 92, 4-8. https://doi.org/10.1016Zj.pbiomolbio.2006.02.016.
  • 20. Silvagno, F.; De Vivo, E.; Attanasio, A.; Gallo, V.; Mazzucco, G.; Pescarmona, G.P. Mitochondrial Localization of Vitamin D Receptor in Human Platelets and Differentiated Megakaryocytes. PLoS ONE 2010, 5, e8670. https://doi.org/10.1371/journal.pone.0008670.
  • 21. Consiglio, M.; Destefanis, M.; Morena, D.; Foglizzo, V.; Forneris, M.; Pescarmona, G.; Silvagno, F. The Vitamin D Receptor Inhibits the Respiratory Chain, Contributing to the Metabolic Switch that Is Essential for Cancer Cell Proliferation. PLoS ONE 2014, 9, e115816. https://doi.org/10.1371/journal.pone.0115816.
  • 22. Consiglio, M.; Viano, M.; Casarin, S.; Castagnoli, C.; Pescarmona, G.; Silvagno, F. Mitochondrial and lipogenic effects of vitamin D in differentiating and proliferating human keratinocytes. Exp. Dermatol. 2015, 24, 748-753. https://doi.org/10.1111/exd.12761.
  • 23. Ricciardi, C.J.; Bae, J.; Esposito, D.; Komarnytsky, S.; Hu, P.; Chen, J.; Zhao, L. 1,25-Dihydroxyvitamin D3/vitamin D receptor
  • suppresses brown adipocyte differentiation and mitochondrial respiration. Eur. J. Nutr. 2015, 54, 1001-1012.
  • https://doi.org/10.1007/s00394-014-0778-9.
  • 24. Adams, J.S.; Ren, S.; Liu, P.T.; Chun, R.F.; Lagishetty, V.; Gombart, A.F.; Borregaard, N.; Modlin, R.L.; Hewison, M. Vitamin D-Directed Rheostatic Regulation of Monocyte Antibacterial Responses. J. Immunol. 2009, 182, 4289-4295.
  • https://doi.org/10.4049/jimmunol.0803736.
  • 25. Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; et al. Toll-Like Receptor Triggering of a Vitamin D-Mediated Human Antimicrobial Response. Science 2006, 311, 1770-1773.
  • https://doi.org/10.1126/science.1123933.
  • 26. Barlow, P.G.; Svoboda, P.; Mackellar, A.; Nash, A.A.; York, I.A.; Pohl, J.; Davidson, D.J.; Donis, R.O. Antiviral Activity and Increased Host Defense against Influenza Infection Elicited by the Human Cathelicidin LL-37. PLoS ONE 2011, 6, e25333. https://doi.org/10.1371/journal.pone.0025333.
  • 27. Sousa, F.H.; Casanova, V.; Findlay, F.; Stevens, C.; Svoboda, P.; Pohl, J.; Proudfoot, L.; Barlow, P.G. Cathelicidins display conserved direct antiviral activity towards rhinovirus. Peptides 2017, 95, 76-83. https://doi.org/10.1016/j.peptides.2017.07.013.
  • 28. Tripathi, S.; Tecle, T.; Verma, A.; Crouch, E.; White, M.; Hartshorn, K. The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins. J. Gen. Virol. 2013, 94, 40-49. https://doi.org/10.1099/vir.0.045013-0.
  • 29. Shahmiri, M.; Enciso, M.; Adda, C.; Smith, B.; Perugini, M.; Mechler, A. Membrane Core-Specific Antimicrobial Action of Cathelicidin LL-37 Peptide Switches Between Pore and Nanofibre Formation. Sci. Rep. 2016, 6, 38184. https://doi.org/10.1038/srep38184.
  • 30. Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236. https://doi.org/10.3390/nu12010236.
  • 31. Guillot, X.; Semerano, L.; Saidenberg-Kermanac'H, N.; Falgarone, G.; Boissier, M.-C. Vitamin D and inflammation. Jt. Bone Spine 2010, 77, 552-557. https://doi.org/10.1016/j.jbspin.2010.09.018.
  • 32. Sharifi, A.; Vahedi, H.; Nedjat, S.; Rafiei, H.; Hosseinzadeh-Attar, M.J. Effect of single-dose injection of vitamin D on immune cytokines in ulcerative colitis patients: A randomized placebo-controlled trial. APMIS 2019, 127, 681-687. https://doi.org/10.1111/apm.12982.
  • 33. Bergandi, L.; Apprato, G.; Silvagno, F. Vitamin D and Beta-Glucans Synergically Stimulate Human Macrophage Activity. Int. J. Mol. Sci. 2021, 22, 4869. https://doi.org/10.3390/ijms22094869.
  • 34. White, J.H. Vitamin D metabolism and signaling in the immune system. Rev. Endocr. Metab. Disord. 2012, 13, 21-29. https://doi.org/10.1007/s11154-011-9195-z.
  • 35. Hewison, M. Vitamin D and the Immune System: New Perspectives on an Old Theme. Endocrinol. Metab. Clin. N. Am. 2010, 39, 365-379. https://doi.org/10.1016/j.ecl.2010.02.010.
  • 36. Medrano, M.; Carrillo-Cruz, E.; Montero, I.; Perez-Simon, J.A. Vitamin D: Effect on Haematopoiesis and Immune System and Clinical Applications. Int. J. Mol. Sci. 2018, 19, 2663. https://doi.org/10.3390/ijms19092663.
  • 37. Veldman, C.M.; Cantorna, M.T.; DeLuca, H.F. Expression of 1,25-Dihydroxyvitamin D3 Receptor in the Immune System. Arch. Biochem. Biophys. 2000, 374, 334-338. https://doi.org/10.1006/abbi.1999.1605.
  • 38. Aranow, C. Vitamin D and the Immune System. J. Investig. Med. 2011, 59, 881-886. https://doi.org/10.2310/jim.0b013e31821b8755.
  • 39. Wu, S.; Sun, J. Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection. Discov. Med. 2011, 11, 325 335.
  • 40. Adorini, L.; Penna, G. Induction of Tolerogenic Dendritic Cells by Vitamin D Receptor Agonists. In Dendritic Cells; Lombardi, G., Riffo-Vasquez, Y., Eds.; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 251 273, ISBN 978-3-540-71029-5.
  • 41. Steinman, R.M.; Hawiger, D.; Nussenzweig, M.C. Tolerogenic Dendritic Cells. Annu. Rev. Immunol. 2003, 21, 685-711. https://doi.org/10.1146/annurev.immunol.21.120601.141040.
  • 42. Szeles, L.; Keresztes, G.; Töröcsik, D.; Balajthy, Z.; Krenacs, L.; Poliska, S.; Steinmeyer, A.; Zuegel, U.; Pruenster, M.; Rot, A.; et al. 1,25-Dihydroxyvitamin D3Is an Autonomous Regulator of the Transcriptional Changes Leading to a Tolerogenic Dendritic Cell Phenotype. J. Immunol. 2009, 182, 2074-2083. https://doi.org/10.4049/jimmunol.0803345.
  • 43. Boonstra, A.; Barrat, F.J.; Crain, C.; Heath, V.L.; Savelkoul, H.F.J.; O'Garra, A. 1a,25-Dihydroxyvitamin D3 Has a Direct Effect on Naive CD4+ T Cells to Enhance the Development of Th2 Cells. J. Immunol. 2001, 167, 4974-4980. https://doi.org/10.4049/jimmunol.167.9.4974.
  • 44. Lemire, J.M.; Archer, D.C.; Beck, L.; Spiegelberg, H.L. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: Preferential inhibition of Th1 functions. J. Nutr. 1995, 125, 1704S-1708S. https://doi.org/10.1093/jn/125.suppl_6.1704S.
  • 45. Tang, J.; Zhou, R.; Luger, D.; Zhu, W.; Silver, P.B.; Grajewski, R.S.; Su, S.-B.; Chan, C.-C.; Adorini, L.; Caspi, R.R. Calcitriol Suppresses Antiretinal Autoimmunity through Inhibitory Effects on the Th17 Effector Response. J. Immunol. 2009, 182, 4624 4632. https://doi.org/10.4049/jimmunol.0801543.
  • 46. Mocanu, V.; Oboroceanu, T.; Zugun-Eloae, F. Current status in vitamin D and regulatory T cells-immunological implications. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2013, 117, 965-973.
  • 47. Kongsbak, M.; Levring, T.B.; Geisler, C.; von Essen, M.R. The Vitamin D Receptor and T Cell Function. Front. Immunol. 2013, 4, 148. https://doi.org/10.3389/fimmu.2013.00148.
  • 48. Sarkar, S.; Hewison, M.; Studzinski, G.P.; Li, Y.C.; Kalia, V. Role of vitamin D in cytotoxic T lymphocyte immunity to pathogens and cancer. Crit. Rev. Clin. Lab. Sci. 2016, 53, 132-145. https://doi.org/10.3109/10408363.2015.1094443.
  • 49. Chen, S.; Sims, G.P.; Chen, X.X.; Gu, Y.Y.; Chen, S.; Lipsky, P.E. Modulatory Effects of 1,25-Dihydroxyvitamin D3 on Human B Cell Differentiation. J. Immunol. 2007, 179, 1634-1647. https://doi.org/10.4049/jimmunol.179.3.1634.
  • 50. Wang, T.-T.; Nestel, F.P.; Bourdeau, V.; Nagai, Y.; Wang, Q.; Liao, J.; Tavera-Mendoza, L.; Lin, R.; Hanrahan, J.W.; Mader, S.; et al. Cutting Edge: 1,25-Dihydroxyvitamin D3 Is a Direct Inducer of Antimicrobial Peptide Gene Expression. J. Immunol. 2004, 173, 2909-2912. https://doi.org/10.4049/jimmunol.173.5.2909.
  • 51. Yim, S.; Dhawan, P.; Ragunath, C.; Christakos, S.; Diamond, G. Induction of cathelicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin D3. J. Cyst. Fibros. 2007, 6, 403-410. https://doi.org/10.1016/j.jcf.2007.03.003.
  • 52. Greiller, C.L.; Martineau, A.R. Modulation of the Immune Response to Respiratory Viruses by Vitamin D. Nutrients 2015, 7, 4240-4270. https://doi.org/10.3390/nu7064240.
  • 53. Brockman-Schneider, R.A.; Pickles, R.J.; Gern, J.E. Effects of Vitamin D on Airway Epithelial Cell Morphology and Rhinovirus Replication. PLoS ONE 2014, 9, e86755. https://doi.org/10.1371/journal.pone.0086755.
  • 54. Hansdottir, S.; Monick, M.M.; Hinde, S.L.; Lovan, N.; Look, D.C.; Hunninghake, G.W. Respiratory Epithelial Cells Convert Inactive Vitamin D to Its Active Form: Potential Effects on Host Defense. J. Immunol. 2008, 181, 7090-7099. https://doi.org/10.4049/jimmunol.181.10.7090.
  • 55. Currie, S.M.; Findlay, E.G.; McHugh, B.; Mackellar, A.; Man, T.; Macmillan, D.; Wang, H.; Fitch, P.; Schwarze, J.; Davidson, D.J. The Human Cathelicidin LL-37 Has Antiviral Activity against Respiratory Syncytial Virus. PLoS ONE 2013, 8, e73659. https://doi.org/10.1371/joumal.pone.0073659.
  • 56. Khare, D.; Godbole, N.M.; Pawar, S.D.; Mohan, V.; Pandey, G.; Gupta, S.; Kumar, D.; Dhole, T.N.; Godbole, M.M. Calcitriol [1, 25OH2 D3] pre- and post-treatment suppresses inflammatory response to influenza A (H1N1) infection in human lung A549 epithelial cells. Eur. J. Nutr. 2013, 52, 1405-1415. https://doi.org/10.1007/s00394-012-0449-7.
  • 57. Bermejo-Martin, J.F.; Ortiz De Lejarazu, R.; Pumarola, T.; Rello, J.; Almansa, R.; Ramirez, P.; Martin-Loeches, I.; Varillas, D.; Gallegos, M.C.; Seron, C.; et al. Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza. Crit. Care 2009, 13, R201. https://doi.org/10.1186/cc8208.
  • 58. Olliver, M.; Spelmink, L.; Hiew, J.; Meyer-Hoffert, U.; Henriques-Normark, B.; Bergman, P. Immunomodulatory Effects of Vitamin D on Innate and Adaptive Immune Responses to Streptococcus pneumoniae. J. Infect. Dis. 2013, 208, 1474-1481. https://doi.org/10.1093/infdis/jit355.
  • 59. Tiosano, D.; Wildbaum, G.; Gepstein, V.; Verbitsky, O.; Weisman, Y.; Karin, N.; Eztioni, A. The Role of Vitamin D Receptor in Innate and Adaptive Immunity: A Study in Hereditary Vitamin D-Resistant Rickets Patients. J. Clin. Endocrinol. Metab. 2013, 98, 1685-1693. https://doi.org/10.1210/jc.2012-3858.
  • 60. Harant, H.; Andrew, P.J.; Reddy, G.S.; Foglar, E.; Lindley, I.J.D. 1alpha,25-Dihydroxyvitamin D3 and a Variety of its Natural Metabolites Transcriptionally Repress Nuclear-Factor-kappaB-Mediated Interleukin-8 Gene Expression. Eur. J. Biochem. 1997, 250, 63-71. https://doi.org/10.1111/j.1432-1033.1997.00063.x.
  • 61. Gatera, V.A.; Lesmana, R.; Musfiroh, I.; Judistiani, R.T.D.; Setiabudiawan, B.; Abdulah, R. Vitamin D Inhibits Lipopolysaccharide (LPS)-Induced Inflammation in A549 Cells by Downregulating Inflammatory Cytokines. Med. Sci. Monit. Basic Res. 2021, 27, e931481-1. https://doi.org/10.12659/msmbr.931481.
  • 62. Calton, E.K.; Keane, K.N.; Newsholme, P.; Soares, M.J. The Impact of Vitamin D Levels on Inflammatory Status: A Systematic Review of Immune Cell Studies. PLoS ONE 2015, 10, e0141770. https://doi.org/10.1371/journal.pone.0141770.
  • 63. Mousa, A.; Misso, M.; Teede, H.; Scragg, R.; De Courten, B. Effect of vitamin D supplementation on inflammation: Protocol for a systematic review. BMJ Open 2016, 6, e010804. https://doi.org/10.1136/bmjopen-2015-010804.
  • 64. Ahmad, S.; Arora, S.; Khan, S.; Mohsin, M.; Mohan, A.; Manda, K.; Syed, M.A. Vitamin D and its therapeutic relevance in pulmonary diseases. J. Nutr. Biochem. 2021, 90, 108571. https://doi.org/10.1016/j.jnutbio.2020.108571.
  • 65. Jachvadze, M.; Shanidze, L.; Gubelidze, N.; Gogberashvili, K. Vitamin D status among georgian children with high acute respiratory morbidity. Georgian Med. News 2021, 314, 95-99.
  • 66. Oktaria, V.; Triasih, R.; Graham, S.M.; Bines, J.E.; Soenarto, Y.; Clarke, M.W.; Lauda, M.; Danchin, M. Vitamin D deficiency and severity of pneumonia in Indonesian children. PLoS ONE 2021, 16, e0254488. https://doi.org/10.1371/journal.pone.0254488.
  • 67. Dele Akeredolu, F.; Akuse, R.M.; Mado, S.M.; Yusuf, R. Relationship Between Serum Vitamin D Levels and Acute Pneumonia in Children Aged 1-59 Months in Nigeria. J. Trop. Pediatr. 2021, 67, fmaa101. https://doi.org/10.1093/tropej/fmaa101.
  • 68. Sarhan, T.S.; Elrifai, A. Serum level of vitamin D as a predictor for severity and outcome of pneumonia. Clin. Nutr. 2021, 40, 2389-2393. https://doi.org/10.1016/j.clnu.2020.10.035.
  • 69. Kuwabara, A.; Tsugawa, N.; Ao, M.; Ohta, J.; Tanaka, K. Vitamin D deficiency as the risk of respiratory tract infections in the institutionalized elderly: A prospective 1-year cohort study. Clin. Nutr. ESPEN 2020, 40, 309-313. https://doi.org/10.1016Zj.clnesp.2020.08.012.
  • 70. Fu, L.; Fei, J.; Tan, Z.-X.; Chen, Y.-H.; Hu, B.; Xiang, H.-X.; Zhao, H.; Xu, D.-X. Low Vitamin D Status Is Associated with Inflammation in Patients with Chronic Obstructive Pulmonary Disease. J. Immunol. 2021, 206, 515-523. https://doi.org/10.4049/jimmunol.2000964.
  • 71. Gorman, S.; Buckley, A.G.; Ling, K.-M.; Berry, L.J.; Fear, V.; Stick, S.; Larcombe, A.; Kicic, A.; Hart, P.H. Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity. Physiol. Rep. 2017, 5, e13371. https://doi.org/10.14814/phy2.13371.
  • 72. Riverin, B.D.; Maguire, J.L.; Li, P. Vitamin D Supplementation for Childhood Asthma: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0136841. https://doi.org/10.1371/journal.pone.0136841.
  • 73. Martineau, A.R.; Cates, C.J.; Urashima, M.; Jensen, M.; Griffiths, A.P.; Nurmatov, U.; Sheikh, A.; Griffiths, C.J. Vitamin D for the management of asthma. Cochrane Database Syst. Rev. 2016, 2019, CD011511. https://doi.org/10.1002/14651858.cd011511.pub2.
  • 74. Yin, K.; Agrawal, D. Vitamin D and inflammatory diseases. J. Inflamm. Res. 2014, 7, 69-87. https://doi.org/10.2147/jir.s63898.
  • 75. Finklea, J.D.; Grossmann, R.E.; Tangpricha, V. Vitamin D and Chronic Lung Disease: A Review of Molecular Mechanisms and Clinical Studies. Adv. Nutr. 2011, 2, 244-253. https://doi.org/10.3945/an.111.000398.
  • 76. Hughes, D.A.; Norton, R. Vitamin D and respiratory health. Clin. Exp. Immunol. 2009, 158, 20-25. https://doi.org/10.1111/j.1365- 2249.2009.04001.x.
  • 77. Xystrakis, E.; Kusumakar, S.; Boswell, S.; Peek, E.; Urry, Z.; Richards, D.F.; Adikibi, T.; Pridgeon, C.; Dallman, M.; Loke, T.-K.; et al. Reversing the defective induction of IL-10-secreting regulatory T cells in glucocorticoid-resistant asthma patients. J. Clin. Investig. 2006, 116, 146-155. https://doi.org/10.1172/jci21759.
  • 78. Ginde, A.A.; Mansbach, J.M.; Camargo, C.A. Vitamin D, respiratory infections, and asthma. Curr. Allergy Asthma Rep. 2009, 9, 81-87. https://doi.org/10.1007/s11882-009-0012-7.
  • 79. Li, Y.; Zhang, Z.; Xu, Y.; Xiong, S.; Ni, W.; Chen, S. TNF-a Up-regulates matrix metalloproteinase-9 expression and activity in alveolar macrophages from patients with chronic obstructive pulmonary disease. J. Huazhong Univ. Sci. Technol. Med. Sci. 2006, 26, 647-650. https://doi.org/10.1007/s11596-006-0604-6.
  • 80. Lim, S.; Roche, N.; Oliver, B.G.; Mattos, W.; Barnes, P.J.; Chung, K.F. Balance of Matrix Metalloprotease-9 and Tissue Inhibitor of Metalloprotease-1 from Alveolar Macrophages in Cigarette Smokers. Regulation by Interleukin-10. Am. J. Respir. Crit. Care Med. 2000, 162, 1355-1360. https://doi.org/10.1164/ajrccm.162.4.9910097.
  • 81. Zisi, D.; Challa, A.; Makis, A. The association between vitamin D status and infectious diseases of the respiratory system in infancy and childhood. Hormones 2019, 18, 353-363. https://doi.org/10.1007/s42000-019-00155-z.
  • 82. Sly, L.; Lopez, M.; Nauseef, W.; Reiner, N.E. 1a,25-Dihydroxyvitamin D3-induced Monocyte Antimycobacterial Activity Is Regulated by Phosphatidylinositol 3-Kinase and Mediated by the NADPH-dependent Phagocyte Oxidase. J. Biol. Chem. 2001, 276, 35482-35493. https://doi.org/10.1074/jbc.m102876200.
  • 83. Bilezikian, J.P.; Bikle, D.; Hewison, M.; Lazaretti-Castro, M.; Formenti, A.M.; Gupta, A.; Madhavan, M.V.; Nair, N.; Babalyan, V.; Hutchings, N.; et al. Mechanisms in Endocrinology: Vitamin D and COVID-19. Eur. J. Endocrinol. 2020, 183, R133-R147. https://doi.org/10.1530/eje-20-0665.
  • 84. Hoe, E.; Nathanielsz, J.; Toh, Z.Q.; Spry, L.; Marimla, R.; Balloch, A.; Mulholland, K.; Licciardi, P.V. Anti-Inflammatory Effects of Vitamin D on Human Immune Cells in the Context of Bacterial Infection. Nutrients 2016, 8, 806. https://doi.org/10.3390/nu8120806.
  • 85. Schwalfenberg, G. A review of the critical role of vitamin D in the functioning of the immune system and the clinical implications of vitamin D deficiency. Mol. Nutr. Food Res. 2011, 55, 96-108. https://doi.org/10.1002/mnfr.201000174.
  • 86. Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. https://doi.org/10.3390/nu12040988.
  • 87. Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ 2017, 356, i6583. https://doi.org/10.1136/bmj.i6583.
  • 88. Laaksi, I.; Ruohola, J.; Mattila, V.; Auvinen, A.; Ylikomi, T.; Pihlajamaki, H. Vitamin D Supplementation for the Prevention of Acute Respiratory Tract Infection: A Randomized, Double-Blinded Trial among Young Finnish Men. J. Infect. Dis. 2010, 202, 809-814. https://doi.org/10.1086/654881.
  • 89. Camargo, C.A.; Ganmaa, D.; Frazier, A.L.; Kirchberg, F.F.; Stuart, J.J.; Kleinman, K.; Sumberzul, N.; Rich-Edwards, J.W. Randomized Trial of Vitamin D Supplementation and Risk of Acute Respiratory Infection in Mongolia. Pediatrics 2012, 130, e561-e567. https://doi.org/10.1542/peds.2011-3029.
  • 90. Feng, Y.; Ling, Y.; Bai, T.; Xie, Y.; Huang, J.; Li, J.; Xiong, W.; Yang, D.; Chen, R.; Lu, F.; et al. COVID-19 with Different Severities: A Multicenter Study of Clinical Features. Am. J. Respir. Crit. Care Med. 2020, 201, 1380-1388. https://doi.org/10.1164/rccm.202002- 0445oc.
  • 91. Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 2021, 93, 250-256. https://doi.org/10.1002/jmv.26232.
  • 92. Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.N.; Weber, A.; Barnes, B.J.; Egeblad, M.; et al. Neutrophil extracellular traps in COVID-19. JCI Insight 2020, 5, e138999. https://doi.org/10.1172/jci.insight.138999.
  • 93. Forman, J.P.; Williams, J.; Fisher, N.D. Plasma 25-Hydroxyvitamin D and Regulation of the Renin-Angiotensin System in Humans. Hypertension 2010, 55, 1283-1288. https://doi.org/10.1161/hypertensionaha.109.148619.
  • 94. Freundlich, M.; Quiroz, Y.; Zhang, Z.; Zhang, Y.; Bravo, Y.; Weisinger, J.R.; Li, Y.C.; Rodriguez-Iturbe, B. Suppression of renin- angiotensin gene expression in the kidney by paricalcitol. Kidney Int. 2008, 74, 1394-1402. https://doi.org/10.1038/ki.2008.408.
  • 95. Rafiullah, M. Can a Combination of AT1R Antagonist and Vitamin D Treat the Lung Complication of COVID-19? Am. J. Med. Sci. 2020, 360, 338-341. https://doi.org/10.1016/j.amjms.2020.07.018.
  • 96. Singh, A.; Dhar, R. A large-scale computational screen identifies strong potential inhibitors for disrupting SARS-CoV-2 S- protein and human ACE2 interaction. J. Biomol. Struct. Dyn. 2021, 1-14. https://doi.org/10.1080/07391102.2021.1921034.
  • 97. Xu, J.; Yang, J.; Chen, J.; Luo, Q.; Zhang, Q.; Zhang, H. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol. Med. Rep. 2017, 16, 7432-7438. https://doi.org/10.3892/mmr.2017.7546.
  • 98. Li, X.C.; Zhang, J.; Zhuo, J.L. The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol. Res. 2017, 125, 21-38. https://doi.org/10.1016Zj.phrs.2017.06.005.
  • 99. Beyerstedt, S.; Casaro, E.B.; Rangel, E.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 905-919. https://doi.org/10.1007/s10096-020- 04138-6.
  • 100. Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care 2020, 24, 422. https://doi.org/10.1186/s13054-020-03120-0.
  • 101. Chen, S.; Prettner, K.; Kuhn, M.; Geldsetzer, P.; Wang, C.; Barnighausen, T.; Bloom, D.E. Climate and the spread of COVID-19. Sci. Rep. 2021, 11, 9042. https://doi.org/10.1038/s41598-021-87692-z.
  • 102. Karapiperis, C.; Kouklis, P.; Papastratos, S.; Chasapi, A.; Danchin, A.; Angelis, L.; Ouzounis, C. A Strong Seasonality Pattern for Covid-19 Incidence Rates Modulated by UV Radiation Levels. Viruses 2021, 13, 574. https://doi.org/10.3390/v13040574.
  • 103. Li, X.; van Geffen, J.; van Weele, M.; Zhang, X.; He, Y.; Meng, X.; Timofeeva, M.; Campbell, H.; Dunlop, M.; Zgaga, L.; et al. An observational and Mendelian randomisation study on vitamin D and COVID-19 risk in UK Biobank. Sci. Rep. 2021, 11, 18262. https://doi.org/10.1038/s41598-021-97679-5.
  • 104. Nicastro, F.; Sironi, G.; Antonello, E.; Bianco, A.; Biasin, M.; Brucato, J.R.; Ermolli, I.; Pareschi, G.; Salvati, M.; Tozzi, P.; et al. Solar UV-B/A radiation is highly effective in inactivating SARS-CoV-2. Sci. Rep. 2021, 11, 14805. https://doi.org/10.1038/s41598- 021-94417-9.
  • 105. Cherrie, M.; Clemens, T.; Colandrea, C.; Feng, Z.; Webb, D.; Weller, R.; Dibben, C. Ultraviolet A radiation and COVID-19 deaths in the USA with replication studies in England and Italy. Br. J. Dermatol. 2021, 185, 363-370. https://doi.org/10.1111/bjd.20093.
  • 106. Rhodes, J.M.; Subramanian, S.; Laird, E.; Griffin, G.; Kenny, R.A. Perspective: Vitamin D deficiency and COVID-19 severity— Plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis. J. Intern. Med. 2021, 289, 97-115. https://doi.org/10.1111/joim.13149.
  • 107. Kloc, M.; Ghobrial, R.M.; Lipinska-Opalka, A.; Wawrzyniak, A.; Zdanowski, R.; Kalicki, B.; Kubiak, J.Z. Effects of vitamin D on macrophages and myeloid-derived suppressor cells (MDSCs) hyperinflammatory response in the lungs of COVID-19 patients. Cell. Immunol. 2021, 360, 104259. https://doi.org/10.1016/j.cellimm.2020.104259.
  • 108. Vassiliou, A.G.; Jahaj, E.; Pratikaki, M.; Keskinidou, C.; Detsika, M.; Grigoriou, E.; Psarra, K.; Orfanos, S.E.; Tsirogianni, A.; Dimopoulou, I.; et al. Vitamin D deficiency correlates with a reduced number of natural killer cells in intensive care unit (ICU) and non-ICU patients with COVID-19 pneumonia. Hell. J. Cardiol. 2020, 62, 381-383. https://doi.org/10.1016/j.hjc.2020.11.011.
  • 109. Seal, K.H.; Bertenthal, D.; Carey, E.; Grunfeld, C.; Bikle, D.D.; Lu, C.M. Association of Vitamin D Status and COVID-19-Related Hospitalization and Mortality. J. Gen. Intern. Med. 2022, 37, 853-861. https://doi.org/10.1007/s11606-021-07170-0.
  • 110. Merzon, E.; Tworowski, D.; Gorohovski, A.; Vinker, S.; Golan Cohen, A.; Green, I.; Frenkel-Morgenstern, M. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: An Israeli population-based study. FEBS J. 2020, 287, 3693-3702. https://doi.org/10.1111/febs.15495.
  • 111. Dror, A.A.; Morozov, N.; Daoud, A.; Namir, Y.; Yakir, O.; Shachar, Y.; Lifshitz, M.; Segal, E.; Fisher, L.; Mizrachi, M.; et al. Preinfection 25-hydroxyvitamin D3 levels and association with severity of COVID-19 illness. PLoS ONE 2022, 17, e0263069. https://doi.org/10.1371/journal.pone.0263069.
  • 112. Diaz-Curiel, M.; Cabello, A.; Arboiro-Pinel, R.; Mansur, J.L.; Heili-Frades, S.; Mahillo-Fernandez, I.; Herrero-Gonzalez, A.; Andrade-Poveda, M. The relationship between 25(OH) vitamin D levels and COVID-19 onset and disease course in Spanish patients. J. Steroid Biochem. Mol. Biol. 2021, 212, 105928. https://doi.org/10.10167j.jsbmb.2021.105928.
  • 113. Carpagnano, G.E.; Di Lecce, V.; Quaranta, V.N.; Zito, A.; Buonamico, E.; Capozza, E.; Palumbo, A.; Di Gioia, G.; Valerio, V.N.; Resta, O. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-J. Endocrinol. Investig. 2021, 44, 765-771. https://doi.org/10.1007/s40618-020-01370-x.
  • 114. Vassiliou, A.G.; Jahaj, E.; Pratikaki, M.; Orfanos, S.E.; Dimopoulou, I.; Kotanidou, A. Low 25-Hydroxyvitamin D Levels on Admission to the Intensive Care Unit May Predispose COVID-19 Pneumonia Patients to a Higher 28-Day Mortality Risk: A Pilot Study on a Greek ICU Cohort. Nutrients 2020, 12, 3773. https://doi.org/10.3390/nu12123773.
  • 115. Subramanian, S.; Rhodes, J.M.; Taylor, J.M.; Milan, A.M.; Lane, S.; Hewison, M.; Chun, R.F.; Jorgensen, A.; Richardson, P.; Nitchingham, D.; et al. Vitamin D, vitamin D-binding protein, free vitamin D and COVID-19 mortality in hospitalized patients. Am. J. Clin. Nutr. 2022, nqac027. https://doi.org/10.1093/ajcn/nqac027.
  • 116. Anjum, S.; Suleman, S.; Afridi, S.; Yasmeen, G.; Ikram Shah, M.; Afridi, S. Examine the Association between Severe Vitamin D Deficiency and Mortality in Patients with COVID-19. Pak. J. Med. Health Sci. 2020, 14, 1184-1186.
  • 117. Dissanayake, H.A.; de Silva, N.L.; Sumanatilleke, M.; de Silva, S.D.N.; Gamage, K.K.K.; Dematapitiya, C.; Kuruppu, D.C.; Ranasinghe, P.; Pathmanathan, S.; Katulanda, P. Prognostic and Therapeutic Role of Vitamin D in COVID-19: Systematic Review and Meta-analysis. J. Clin. Endocrinol. Metab. 2021, dgab892. https://doi.org/10.1210/clinem/dgab892.
  • 118. Munshi, R.; Hussein, M.H.; Toraih, E.A.; Elshazli, R.M.; Jardak, C.; Sultana, N.; Youssef, M.R.; Omar, M.; Attia, A.S.; Fawzy, M.S.; et al. Vitamin D insufficiency as a potential culprit in critical COVID-19 patients. J. Med. Virol. 2021, 93, 733-740. https://doi.org/10.1002/jmv.26360.
  • 119. Petrelli, F.; Luciani, A.; Perego, G.; Dognini, G.; Colombelli, P.L.; Ghidini, A. Therapeutic and prognostic role of vitamin D for COVID-19 infection: A systematic review and meta-analysis of 43 observational studies. J. Steroid Biochem. Mol. Biol. 2021, 211, 105883. https://doi.org/10.1016/j.jsbmb.2021.105883.
  • 120. Saponaro, F.; Franzini, M.; Okoye, C.; Antognoli, R.; Campi, B.; Scalese, M.; Neri, T.; Carrozzi, L.; Monzani, F.; Zucchi, R.; et al. Is There a Crucial Link between Vitamin D Status and Inflammatory Response in Patients with COVID-19? Front. Immunol. 2022, 12, 745713. https://doi.org/10.3389/fimmu.2021.745713.
  • 121. MacLaughlin, J.; Holick, M.F. Aging decreases the capacity of human skin to produce vitamin D3. J. Clin. Investig. 1985, 76, 1536-1538. https://doi.org/10.1172/jci112134.
  • 122. Grober, U. Common drugs as vitamin D disruptors. J. Transl. Sci. 2020, 6. https://doi.org/10.15761/jts.1000378.
  • 123. Pascussi, J.M.; Robert, A.; Nguyen, M.; Walrant-Debray, O.; Garabedian, M.; Martin, P.; Pineau, T.; Saric, J.; Navarro, F.; Maurel, P.; et al. Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. J. Clin. Investig. 2005, 115, 177-186. https://doi.org/10.1172/jci21867.
  • 124. Moreau, A.; Maurel, P.; Vilarem, M.-J.; Pascussi, J.-M. Constitutive androstane receptor-vitamin D receptor crosstalk: Consequence on CYP24 gene expression. Biochem. Biophys. Res. Commun. 2007, 360, 76-82. https://doi.org/10.1016/j.bbrc.2007.06.003.
  • 125. Sulli, A.; Gotelli, E.; Casabella, A.; Paolino, S.; Pizzorni, C.; Alessandri, E.; Grosso, M.; Ferone, D.; Smith, V.; Cutolo, M. Vitamin D and Lung Outcomes in Elderly COVID-19 Patients. Nutrients 2021, 13, 717. https://doi.org/10.3390/nu13030717.
  • 126. Alguwaihes, A.M.; Sabico, S.; Hasanato, R.; Al-Sofiani, M.E.; Megdad, M.; Albader, S.S.; Alsari, M.H.; Alelayan, A.; Alyusuf, E.Y.; Alzahrani, S.H.; et al. Severe vitamin D deficiency is not related to SARS-CoV-2 infection but may increase mortality risk in hospitalized adults: A retrospective case-control study in an Arab Gulf country. Aging Clin. Exp. Res. 2021, 33, 1415-1422. https://doi.org/10.1007/s40520-021-01831-0.
  • 127. Bayramoglu, E.; Akkog, G.; Agba§, A.; Akgun, O.; Yurdakul, K.; Selguk Duru, H.N.; Elevli, M. The association between vitamin D levels and the clinical severity and inflammation markers in pediatric COVID-19 patients: Single-center experience from a pandemic hospital. Eur. J. Pediatr. 2021, 180, 2699-2705. https://doi.org/10.1007/s00431-021-04030-1.
  • 128. Kaufman, H.W.; Niles, J.K.; Kroll, M.H.; Bi, C.; Holick, M.F. SARS-CoV-2 positivity rates associated with circulating 25- hydroxyvitamin D levels. PLoS ONE 2020, 15, e0239252. https://doi.org/10.1371/journal.pone.0239252.
  • 129. Hastie, C.E.; Mackay, D.F.; Ho, F.; Celis-Morales, C.A.; Katikireddi, S.V.; Niedzwiedz, C.L.; Jani, B.D.; Welsh, P.; Mair, F.S.; Gray, S.R.; et al. Vitamin D concentrations and COVID-19 infection in UK Biobank. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 561-565. https://doi.org/10.1016Zj.dsx.2020.04.050.
  • 130. Raisi-Estabragh, Z.; McCracken, C.; Bethell, M.S.; Cooper, J.; Cooper, C.; Caulfield, M.J.; Munroe, P.B.; Harvey, N.C.; Petersen, S.E. Greater risk of severe COVID-19 in Black, Asian and Minority Ethnic populations is not explained by cardiometabolic, socioeconomic or behavioural factors, or by 25(OH)-vitamin D status: Study of 1326 cases from the UK Biobank. J. Public Health 42, 451-460. https://doi.org/10.1093/pubmed/fdaa095.
  • 131. Patchen, B.K.; Clark, A.G.; Gaddis, N.; Hancock, D.B.; Cassano, P.A. Genetically predicted serum vitamin D and COVID-19: A Mendelian randomisation study. BMJ Nutr. Prev. Health 2021, 4, 213-225. https://doi.org/10.1136/bmjnph-2021-000255.
  • 132. Alvares Brandao, C.M.; Chiamolera, M.I.; Biscolla, R.P.M.; Lima, J.V.; Ferrer, C.M.D.F.; Prieto, W.H.; Russo, P.D.S.T.; de Sa, J.; Lazari, C.D.S.; Granato, C.F.H.; et al. No association between vitamin D status and COVID-19 infection in Sao Paulo, Brazil. Arch. Endocrinol. Metab. 2021, 65, 381-385. https://doi.org/10.20945/2359-3997000000343.
  • 133. Bakaloudi, D.R.; Chourdakis, M. A critical update on the role of mild and serious vitamin D deficiency prevalence and the COVID-19 epidemic in Europe. Nutrition 2022, 93, 111441. https://doi.org/10.1016/j.nut.2021.111441.
  • 134. Townsend, L.; Dyer, A.; McCluskey, P.; O'Brien, K.; Dowds, J.; Laird, E.; Bannan, C.; Bourke, N.; Ni Cheallaigh, C.; Byrne, D.; et al. Investigating the Relationship between Vitamin D and Persistent Symptoms Following SARS-CoV-2 Infection. Nutrients 13, 2430. https://doi.org/10.3390/nu13072430.
  • 135. Hirano, T.; Murakami, M. COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity 2020, 52, 731-733. https://doi.org/10.1016/j.immuni.2020.04.003.
  • 136. Notz, Q.; Herrmann, J.; Schlesinger, T.; Kranke, P.; Sitter, M.; Helmer, P.; Stumpner, J.; Roeder, D.; Amrein, K.; Stoppe, C.; et al. Vitamin D deficiency in critically ill COVID-19 ARDS patients. Clin. Nutr. 2021, S0261561421001357. https://doi.org/10.1016/j.clnu.2021.03.001.
  • 137. Shi, Y.-Y.; Liu, T.-J.; Fu, J.-H.; Xu, W.; Wu, L.-L.; Hou, A.-N.; Xue, X.-D. Vitamin D/VDR signaling attenuates lipopolysaccharide- induced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier. Mol. Med. Rep. 2016, 13, 1186-1194. https://doi.org/10.3892/mmr.2015.4685.
  • 138. Dancer, R.C.A.; Parekh, D.; Lax, S.; D'Souza, V.; Zheng, S.; Bassford, C.R.; Park, D.; Bartis, D.G.; Mahida, R.; Turner, A.M.; et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax 2015, 70, 617-624. https://doi.org/10.1136/thoraxjnl-2014-206680.
  • 139. Kempker, J.A.; Han, J.E.; Tangpricha, V.; Ziegler, T.R.; Martin, G.S. Vitamin D and sepsis: An emerging relationship. Dermato- Endocrinology 2012, 4, 101-108. https://doi.org/10.4161/derm.19859.
  • 140. Quraishi, S.A.; Bhan, I.; Matthay, M.A.; Thompson, B.T.; Camargo, J.C.A.; Bajwa, E.K. Vitamin D Status and Clinical Outcomes in Acute Respiratory Distress Syndrome: A Secondary Analysis from the Assessment of Low Tidal Volume and Elevated End- Expiratory Volume to Obviate Lung Injury (ALVEOLI) Trial. J. Intensive Care Med. 2021. https://doi.org/10.1177/08850666211028139.
  • 141. Rastogi, A.; Bhansali, A.; Khare, N.; Suri, V.; Yaddanapudi, N.; Sachdeva, N.; Puri, G.D.; Malhotra, P. Short term, high-dose vitamin D supplementation for COVID-19 disease: A randomised, placebo-controlled, study (SHADE study). Postgrad. Med. J. 2020, 1-4. https://doi.org/10.1136/postgradmedj-2020-139065.
  • 142. Annweiler, C.; Hanotte, B.; Grandin de L'Eprevier, C.; Sabatier, J.-M.; Lafaie, L.; Celarier, T. Vitamin D and survival in COVID– 19 patients: A quasi-experimental study. J. Steroid Biochem. Mol. Biol. 2020, 204, 105771.https://doi.org/10.1016/j.jsbmb.2020.105771.
  • 143. Annweiler, C.; Beaudenon, M.; Simon, R.; Guenet, M.; Otekpo, M.; Célarier, T.; Gautier, J. Vitamin D supplementation prior to or during COVID-19 associated with better 3-month survival in geriatric patients: Extension phase of the GERIA-COVID study. J. Steroid Biochem. Mol. Biol. 2021, 213, 105958. https://doi.org/10.1016/j.jsbmb.2021.105958.
  • 144. Ling, S.F.; Broad, E.; Murphy, R.; Pappachan, J.M.; Pardesi-Newton, S.; Kong, M.F.; Jude, E.B. High-Dose Cholecalciferol Booster Therapy is Associated with a Reduced Risk of Mortality in Patients with COVID-19: A Cross-Sectional Multi-Centre Observational Study. Nutrients 2020, 12, 3799. https://doi.org/10.3390/nu12123799.
  • 145. Giannini, S.; Passeri, G.; Tripepi, G.; Sella, S.; Fusaro, M.; Arcidiacono, G.; Torres, M.; Michielin, A.; Prandini, T.; Baffa, V.; et al. Effectiveness of In-Hospital Cholecalciferol Use on Clinical Outcomes in Comorbid COVID-19 Patients: A Hypothesis Generating Study. Nutrients 2021, 13, 219. https://doi.org/10.3390/nu13010219.
  • 146. Lakkireddy, M.; Gadiga, S.G.; Malathi, R.D.; Karra, M.L.; Raju, I.S.S.V.P.M.; Ragini; Chinapaka, S.; Baba, K.S.S.S.; Kandakatla, M. Impact of daily high dose oral vitamin D therapy on the inflammatory markers in patients with COVID 19 disease. Sci. Rep. 2021, 11, 10641. https://doi.org/10.1038/s41598-021-90189-4.
  • 147. Tan, C.W.; Ho, L.P.; Kalimuddin, S.; Cherng, B.P.Z.; Teh, Y.E.; Thien, S.Y.; Wong, H.M.; Tern, P.J.W.; Chandran, M.; Chay, J.W.M.; et al. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition 2020, 79-80, 111017. https://doi.org/10.1016/j.nut.2020.111017.
  • 148. Sabico, S.; Enani, M.A.; Sheshah, E.; Aljohani, N.J.; Aldisi, D.A.; Alotaibi, N.H.; Alshingetti, N.; Alomar, S.Y.; Alnaami, A.M.; Amer, O.E.; et al. Effects of a 2-Week 5000 IU versus 1000 IU Vitamin D3 Supplementation on Recovery of Symptoms in Patients with Mild to Moderate Covid-19: A Randomized Clinical Trial. Nutrients 2021, 13, 2170. https://doi.org/10.3390/nu13072170.
  • 149. Gonen, M.S.; Alaylioglu, M.; Durcan, E.; Ozdemir, Y.; §ahin, S.; Konukoglu, D.; Nohut, O.K.; Ürkmez, S.; Kügükece, B.; Balkan,
  • I.I.; et al. Rapid and Effective Vitamin D Supplementation May Present Better Clinical Outcomes in COVID-19 (SARS-CoV-2) Patients by Altering Serum INOS1, IL1B, IFNg, Cathelicidin-LL37, and ICAM1. Nutrients 2021, 13, 4047. https://doi.org/10.3390/nu13114047.
  • 150. Oristrell, J.; Oliva, J.C.; Casado, E.; Subirana, I.; Domínguez, D.; Toloba, A.; Balado, A.; Grau, M. Vitamin D supplementation and COVID-19 risk: A population-based, cohort study. J. Endocrinol. Investig. 2021, 45, 167-179. https://doi.org/10.1007/s40618- 021-01639-9.
  • 151. Loucera, C.; Peña-Chilet, M.; Esteban-Medina, M.; Muñoyerro-Muñiz, D.; Villegas, R.; Lopez-Miranda, J.; Rodriguez-Baño, J.; Túnez, I.; Bouillon, R.; Dopazo, J.; et al. Real world evidence of calcifediol or vitamin D prescription and mortality rate of COVID-19 in a retrospective cohort of hospitalized Andalusian patients. Sci. Rep. 2021, 11, 23380. https://doi.org/10.1038/s41598- 021-02701-5.
  • 152. Entrenas Castillo, M.E.; Entrenas Costa, L.M.E.; Vaquero Barrios, J.M.V.; Alcalá Díaz, J.F.A.; López Miranda, J.L.; Bouillon, R.; Quesada Gomez, J.M.Q. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J. Steroid Biochem. Mol. Biol. 2020, 203, 105751. https://doi.org/10.1016/j.jsbmb.2020.105751.
  • 153. Alcala-Diaz, J.; Limia-Perez, L.; Gomez-Huelgas, R.; Martin-Escalante, M.; Cortes-Rodriguez, B.; Zambrana-Garcia, J.; Entrenas- Castillo, M.; Perez-Caballero, A.; López-Carmona, M.; Garcia-Alegria, J.; et al. Calcifediol Treatment and Hospital Mortality Due to COVID-19: A Cohort Study. Nutrients 2021, 13, 1760. https://doi.org/10.3390/nu13061760.
  • 154. Maghbooli, Z.; Sahraian, M.A.; Jamalimoghadamsiahkali, S.; Asadi, A.; Zarei, M.A.; Zendehdel, A.; Varzandi, T.; Mohammadnabi, S.; Alijani, N.; Karimi, M.; et al. Treatment With 25-Hydroxyvitamin D3 (Calcifediol) Is Associated With a Reduction in the Blood Neutrophil-to-Lymphocyte Ratio Marker of Disease Severity in Hospitalized Patients With COVID-19: A Pilot Multicenter, Randomized, Placebo-Controlled, Double-Blinded Clinical Trial. Endocr. Pract. 2021, 27, 1242-1251. https://doi.org/10.1016/peprac.2021.09.016.
  • 155. Elamir, Y.M.; Amir, H.; Lim, S.; Rana, Y.P.; Lopez, C.G.; Feliciano, N.V.; Omar, A.; Grist, W.P.; Via, M.A. A randomized pilot study using calcitriol in hospitalized COVID-19 patients. Bone 2021, 154, 116175. https://doi.org/10.1016/pbone.2021.116175.
  • 156. Murai, I.H.; Fernandes, A.L.; Sales, L.P.; Pinto, A.J.; Goessler, K.F.; Duran, C.S.C.; Silva, C.B.R.; Franco, A.S.; Macedo, M.B.; Dalmolin, H.H.H.; et al. Effect of a Single High Dose of Vitamin D3 on Hospital Length of Stay in Patients With Moderate to Severe COVID-19: A Randomized Clinical Trial. JAMA 2021, 325, 1053-1060. https://doi.org/10.1001/jama.2020.26848.
  • 157. Güven, M.; Gültekin, H. The effect of high-dose parenteral vitamin D3 on COVID-19-related inhospital mortality in critical COVID-19 patients during intensive care unit admission: An observational cohort study. Eur. J. Clin. Nutr. 2021, 75, 1383-1388. https://doi.org/10.1038/s41430-021-00984-5.
  • 158. Griffin, G.; Hewison, M.; Hopkin, J.; Kenny, R.A.; Quinton, R.; Rhodes, J.; Subramanian, S.; Thickett, D. Perspective: Vitamin D supplementation prevents rickets and acute respiratory infections when given as daily maintenance but not as intermittent bolus: Implications for COVID-19. Clin. Med. 2021, 21, e144-e149. https://doi.org/10.7861/clinmed.2021-0035.
  • 159. Mazess, R.B.; Bischoff-Ferrari, H.A.; Dawson-Hughes, B. Vitamin D: Bolus Is Bogus—A Narrative Review. JBMR Plus 2021, 5, e10567. https://doi.org/10.1002/jbm4.10567.
  • 160. Pérez-Castrillón, J.L.; Dueñas-Laita, A.; Brandi, M.L.; Jódar, E.; del Pino-Montes, J.; Quesada-Gómez, J.M.; Cereto Castro, F.; Gómez-Alonso, C.; Gallego López, L.; Olmos Martínez, J.M.; et al. Calcifediol is superior to cholecalciferol in improving vitamin D status in postmenopausal women: A randomized trial. J. Bone Miner. Res. 2021, 36, 1967-1978. https://doi.org/10.1002/jbmr.4387.
  • 161. Brower, R.G.; Lanken, P.N.; MacIntyre, N.; Matthay, M.A.; Morris, A.; Ancukiewicz, M.; Schoenfeld, D.; Thompson, B.T.; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network Higher versus Lower Positive End-Expiratory Pressures in Patients with the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2004, 351, 327-336. https://doi.org/10.1056/nejmoa032193.
  • 162. Waldron, J.L.; Ashby, H.L.; Cornes, M.P.; Bechervaise, J.; Razavi, C.; Thomas, O.L.; Chugh, S.; Deshpande, S.; Ford, C.; Gama, R. Vitamin D: A negative acute phase reactant. J. Clin. Pathol. 2013, 66, 620-622. https://doi.org/10.1136/jclinpath-2012-201301.
  • 163. Abdrabbo, M.; Birch, C.M.; Brandt, M.; Cicigoi, K.A.; Coffey, S.J.; Dolan, C.C.; Dvorak, H.; Gehrke, A.C.; Gerzema, A.E.L.; Hansen, A.; et al. Vitamin D and COVID-19: A review on the role of vitamin D in preventing and reducing the severity of COVID-19 infection. Protein Sci. 2021, 30, 2206-2220. https://doi.org/10.1002/pro.4190.
  • 164. Ghelani, D.; Alesi, S.; Mousa, A. Vitamin D and COVID-19: An Overview of Recent Evidence. Int. J. Mol. Sci. 2021, 22, 10559. https://doi.org/10.3390/ijms221910559.
  • 165. Szarpak, L.; Rafique, Z.; Gasecka, A.; Chirico, F.; Gawel, W.; Hernik, J.; Kaminska, H.; Filipiak, K.J.; Jaguszewski, M.J.; Szarpak, L. A systematic review and meta-analysis of effect of vitamin D levels on the incidence of COVID-19. Cardiol. J. 2021, 28, 647 654. https://doi.org/10.5603/cj.a2021.0072.
  • 166. 166. de las Heras, N.; Martín Giménez, V.M.; Ferder, L.; Manucha, W.; Lahera, V. Implications of Oxidative Stress and Potential Role of Mitochondrial Dysfunction in COVID-19: Therapeutic Effects of Vitamin D. Antioxidants 2020, 9, 897. https://doi.org/10.3390/antiox9090897.
  • 167. Song, Y.; Qayyum, S.; Greer, R.A.; Slominski, R.M.; Raman, C.; Slominski, A.T.; Song, Y. Vitamin D3 and its hydroxyderivatives as promising drugs against COVID-19: A computational study. J. Biomol. Struct. Dyn. 2021, 1-17. https://doi.org/10.1080/07391102.2021.1964601.
  • 168. Glinsky, G.V. Tripartite Combination of Candidate Pandemic Mitigation Agents: Vitamin D, Quercetin, and Estradiol Manifest Properties of Medicinal Agents for Targeted Mitigation of the COVID-19 Pandemic Defined by Genomics-Guided Tracing of SARS-CoV-2 Targets in Human Cells. Biomedicines 2020, 8, 129. https://doi.org/10.3390/biomedicines8050129.
  • 169. Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O'Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020, 583, 459-468. https://doi.org/10.1038/s41586-020-2286-9.
  • 170. Yeh, C.-L.; Wu, J.-M.; Su, L.-H.; Yang, P.-J.; Lee, P.-C.; Chen, K.-Y.; Yeh, S.-L.; Lin, M.-T. Intravenous calcitriol administration regulates the renin-angiotensin system and attenuates acute lung injury in obese mice complicated with polymicrobial sepsis. Biomed. Pharmacother. 2021, 141, 111856. https://doi.org/10.1016/j.biopha.2021.111856.
  • 171. Kong, J.; Zhu, X.; Shi, Y.; Liu, T.; Chen, Y.; Bhan, I.; Zhao, Q.; Thadhani, R.; Li, Y.C. VDR Attenuates Acute Lung Injury by
  • Blocking Ang-2-Tie-2 Pathway and Renin-Angiotensin System. Mol. Endocrinol. 2013, 27, 2116-2125. https://doi.org/10.1210/me.2013-1146.
  • 172. Zhang, C.; Tong, T.; Miao, D.-C.; Wang, L.-F. Vitamin D inhibits TNF-a induced apoptosis of human nucleus pulposus cells through regulation of NF-kB signaling pathway. J. Orthop. Surg. Res. 2021, 16, 411. https://doi.org/10.1186/s13018-021-02545-9.
  • 173. Cimmino, G.; Morello, A.; Conte, S.; Pellegrino, G.; Marra, L.; Golino, P.; Cirillo, P. Vitamin D inhibits Tissue Factor and CAMs expression in oxidized low-density lipoproteins-treated human endothelial cells by modulating NF-kB pathway. Eur. J. Pharmacol. 2020, 885, 173422. https://doi.org/10.1016/j.ejphar.2020.173422.
  • 174. Derakhshanian, H.; Djazayery, A.; Javanbakht, M.H.; Eshraghian, M.R.; Mirshafiey, A.; Jahanabadi, S.; Ghadbeigi, S.; Zarei, M.; Alvandi, E.; Djalali, M. Vitamin D downregulates key genes of diabetes complications in cardiomyocyte. J. Cell. Physiol. 2019, 234, 21352-21358. https://doi.org/10.1002/jcp.28743.
  • 175. Lei, G.-S.; Zhang, C.; Cheng, B.-H.; Lee, C.-H. Mechanisms of Action of Vitamin D as Supplemental Therapy for Pneumocystis Pneumonia. Antimicrob. Agents Chemother. 2017, 61, e01226-17. https://doi.org/10.1128/aac.01226-17.
  • 176. Ricca, C.; Aillon, A.; Bergandi, L.; Alotto, D.; Castagnoli, C.; Silvagno, F. Vitamin D Receptor Is Necessary for Mitochondrial Function and Cell Health. Int. J. Mol. Sci. 2018, 19, 1672. https://doi.org/10.3390/ijms19061672.
  • 177. Wong, K.E.; Szeto, F.L.; Zhang, W.; Ye, H.; Kong, J.; Zhang, Z.; Sun, X.J.; Li, Y.C. Involvement of the vitamin D receptor in energy metabolism: Regulation of uncoupling proteins. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E820-E828. https://doi.org/10.1152/ajpendo.90763.2008.
  • 178. Berry, B.J.; Trewin, A.J.; Amitrano, A.M.; Kim, M.; Wojtovich, A.P. Use the Protonmotive Force: Mitochondrial Uncoupling and Reactive Oxygen Species. J. Mol. Biol. 2018, 430, 3873-3891. https://doi.org/10.1016/j.jmb.2018.03.025.
  • 179. Conley, K.E.; Marcinek, D.; Villarin, J. Mitochondrial dysfunction and age. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 688-692. https://doi.org/10.1097/mco.0b013e3282f0dbfb.
  • 180. Tiku, V.; Tan, M.-W.; Dikic, I. Mitochondrial Functions in Infection and Immunity. Trends Cell Biol. 2020, 30, 263-275. https://doi.org/10.1016/j.tcb.2020.01.006.
  • 181. Singh, K.K.; Chaubey, G.; Chen, J.Y.; Suravajhala, P. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am. J. Physiol. Cell. Physiol. 2020, 319, C258-C267. https://doi.org/10.1152/ajpcell.00224.2020.
  • 182. Suryawanshi, R.K.; Koganti, R.; Agelidis, A.; Patil, C.D.; Shukla, D. Dysregulation of Cell Signaling by SARS-CoV-2. Trends Microbiol. 2021, 29, 224-237. https://doi.org/10.1016/jTim.2020.12.007.
  • 183. Bonora, M.; De Marchi, E.; Patergnani, S.; Suski, J.M.; Celsi, F.; Bononi, A.; Giorgi, C.; Marchi, S.; Rimessi, A.; Duszynski, J.; et al. Tumor necrosis factor-a impairs oligodendroglial differentiation through a mitochondria-dependent process. Cell Death Differ. 2014, 21, 1198-1208. https://doi.org/10.1038/cdd.2014.35.
  • 184. Kastl, L.; Sauer, S.; Ruppert, T.; Beissbarth, T.; Becker, M.; Süss, D.; Krammer, P.; Gülow, K. TNF-a mediates mitochondrial uncoupling and enhances ROS-dependent cell migration via NF-kB activation in liver cells. FEBS Lett. 2014, 588, 175-183. https://doi.org/10.1016/jTebslet.2013.11.033.
  • 185. Ghosh, S.; Dellibovi-Ragheb, T.A.; Kerviel, A.; Pak, E.; Qiu, Q.; Fisher, M.; Takvorian, P.M.; Bleck, C.; Hsu, V.W.; Fehr, A.R.; et al. ß-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway. Cell 2020, 183, 1520-1535.e14. https://doi.org/10.1016/j.cell.2020.10.039.
  • 186. Lee, B.S.; Holliday, L.S.; Krits, I.; Gluck, S.L. Vacuolar H+-ATPase Activity and Expression in Mouse Bone Marrow Cultures. J. Bone Miner. Res. 1999, 14, 2127-2136. https://doi.org/10.1359/jbmr.1999.14.12.2127.
  • 187. Paul, B.D.; Lemle, M.D.; Komaroff, A.L.; Snyder, S.H. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc. Natl. Acad. Sci. USA 2021, 118, e2024358118. https://doi.org/10.1073/pnas.2024358118.

VitaminDWiki – COVID-19 treated by Vitamin D - studies, reports, videos

As of Nov 25, 2022, the VitaminDWiki COVID page had:  19 trial results,   37 meta-analyses and reviews,   Mortality studies   see related:   Governments,   HealthProblems,   Hospitals,  Dark Skins,   26 risk factors are ALL associated with low Vit D,   Recent Virus pages   Fight COVID-19 with 50K Vit D weekly   Vaccines   Take lots of Vitamin D at first signs of COVID   116 COVID Clinical Trials using Vitamin D (08/2022)
5 most-recently changed Virus entries

VitaminDWiki - Virus studies with ROLE in title

This list is automatically updated

Items found: 7

Created by admin. Last Modification: Friday March 25, 2022 21:38:00 GMT-0000 by admin. (Version 7)

Attached files

ID Name Comment Uploaded Size Downloads
17303 ijms-1619784-supplementary.pdf admin 25 Mar, 2022 20:58 357.26 Kb 88
17302 The role.pdf PDF 2022 admin 25 Mar, 2022 20:58 538.42 Kb 84
See any problem with this page? Report it (WORKS NOV 2021)