Loading...
 
Toggle Health Problems and D

Rectal Cancer genes down-regulated by Vitamin D (3,200 IU only helped some) – RCT Aug 2021

Oral vitamin D supplementation induces transcriptomic changes in rectal mucosa that are linked to anti-tumour effects

BMC Med. 2021 Aug 3;19(1):174. doi: 10.1186/s12916-021-02044-y
P G Vaughan-Shaw 1 2, G Grimes 1 2, J P Blackmur 1 2, M Timofeeva 3 4, M Walker 1 2, L Y Ooi 1 5, Victoria Svinti 1 2, Kevin Donnelly 1 2, F V N Din 1 2, S M Farrington 1 2, M G Dunlop 6 7

VitaminDWiki

Note: 12 weeks is not long enough for everyone to plateau at the new vitamin D level
If the study had done one or more of the following, far more people would have benefitted

  1. Had the trial last 20 weeks, not just 12
  2. Used large daily dosing - say 6,000 IU
  3. Started with a loading dose – say 50,000 IU daily for the first week
  4. Added a daily Vitamin D receptor (such as Resveratrol or Questetin) to increase the vitamin D getting to cells

Cancer - Colon category starts with the following

VitaminDWike pages in BOTH Colon Cancer and Genetics categories

VitaminDWike pages in BOTH Colon Cancer and Vitamin D Receptor categories

 Download the PDF from VitaminDWiki

Background: The risk for several common cancers is influenced by the transcriptomic landscape of the respective tissue-of-origin. Vitamin D influences in vitro gene expression and cancer cell growth. We sought to determine whether oral vitamin D induces beneficial gene expression effects in human rectal epithelium and identify biomarkers of response.

Methods: Blood and rectal mucosa was sampled from 191 human subjects and mucosa gene expression (HT12) correlated with plasma vitamin D (25-OHD) to identify differentially expressed genes. Fifty subjects were then administered 3200IU/day oral vitamin D3 and matched blood/mucosa resampled after 12 weeks. Transcriptomic changes (HT12/RNAseq) after supplementation were tested against the prioritised genes for gene-set and GO-process enrichment. To identify blood biomarkers of mucosal response, we derived receiver-operator curves and C-statistic (AUC) and tested biomarker reproducibility in an independent Supplementation Trial (BEST-D).

Results: Six hundred twenty-nine genes were associated with 25-OHD level (P < 0.01), highlighting 453 GO-term processes (FDR<0.05). In the whole intervention cohort, vitamin D supplementation enriched the prioritised mucosal gene-set (upregulated gene-set P < 1.0E-07; downregulated gene-set P < 2.6E-05) and corresponding GO terms (P = 2.90E-02), highlighting gene expression patterns consistent with anti-tumour effects.
However, only 9 individual participants (18%) showed a significant response (NM gene-set enrichment P < 0.001) to supplementation. Expression changes in HIPK2 and PPP1CC expression served as blood biomarkers of mucosal transcriptomic response (AUC=0.84 95%CI 0.66-1.00) and replicated in BEST-D trial subjects (HIPK2 AUC=0.83 [95%CI 0.77-0.89]; PPP1CC AUC=0.91 [95%CI 0.86-0.95]).

Conclusions: Higher plasma 25-OHD correlates with rectal mucosa gene expression patterns consistent with anti-tumour effects, and this beneficial signature is induced by short-term vitamin D supplementation. Heterogenous gene expression responses to vitamin D may limit the ability of randomised trials to identify beneficial effects of supplementation on CRC risk. However, in the current study blood expression changes in HIPK2 and PPP1CC identify those participants with significant anti-tumour transcriptomic responses to supplementation in the rectum. These data provide compelling rationale for a trial of vitamin D and CRC prevention using easily assayed blood gene expression signatures as intermediate biomarkers of response.

References

  1. Theodoratou E, Tzoulaki I, Zgaga L, Ioannidis JP. Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ. 2014;348(apr01 2):g2035. https://doi.org/10.1136/bmj.g2035 . - DOI - PubMed - PMC
  2. Autier P, Boniol M, Pizot C, Mullie P. Vitamin D status and ill health: a systematic review. Lancet Diabetes Endocrinol. 2014;2(1):76–89. https://doi.org/10.1016/S2213-8587(13)70165-7 . - DOI - PubMed - PMC
  3. Barry EL, Peacock JL, Rees JR, Bostick RM, Robertson DJ, Bresalier RS, et al. Vitamin D receptor genotype, vitamin D3 supplementation, and risk of colorectal adenomas: a randomized clinical trial. JAMA Oncol. 2017;3(5):628-35.
  4. Hermann J, Eder P, Banasiewicz T, Matysiak K, Lykowska-Szuber L. Current management of anal fistulas in Crohn's disease. Prz Gastroenterol. 2015;10(2):83–8. https://doi.org/10.5114/pg.2015.49684 . - DOI - PubMed - PMC
  5. Vaughan-Shaw PG, O'Sullivan F, Farrington SM, Theodoratou E, Campbell H, Dunlop MG, et al. The impact of vitamin D pathway genetic variation and circulating 25-hydroxyvitamin D on cancer outcome: systematic review and meta-analysis. Br J Cancer. 2017;116(8):1092–110. https://doi.org/10.1038/bjc.2017.44 . - DOI - PubMed - PMC
  6. Vaughan-Shaw PG, Zgaga L, Ooi LY, Theodoratou E, Timofeeva M, Svinti V, et al. Low plasma vitamin D is associated with adverse colorectal cancer survival after surgical resection, independent of systemic inflammatory response. Gut. 2020;69(1):103–11. https://doi.org/10.1136/gutjnl-2018-317922 . - DOI - PubMed
  7. Keum N, Lee DH, Greenwood DC, Manson JE, Giovannucci E. Vitamin D supplementation and total cancer incidence and mortality: a meta-analysis of randomized controlled trials. Ann Oncol. 2019;30(5):733–43. https://doi.org/10.1093/annonc/mdz059 . - DOI - PubMed - PMC
  8. Vaughan-Shaw PG, Buijs LF, Blackmur JP, Theodoratou E, Zgaga L, Din FVN, et al. The effect of vitamin D supplementation on survival in patients with colorectal cancer: systematic review and meta-analysis of randomised controlled trials. Br J Cancer. 2020;123(11):1705–12. https://doi.org/10.1038/s41416-020-01060-8 . - DOI - PubMed - PMC
  9. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28. https://doi.org/10.1038/nrg816 . - DOI - PubMed
  10. Bertucci F, Salas S, Eysteries S, Nasser V, Finetti P, Ginestier C, et al. Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene. 2004;23(7):1377–91. https://doi.org/10.1038/sj.onc.1207262 . - DOI - PubMed
  11. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci U S A. 1999;96(12):6745–50. https://doi.org/10.1073/pnas.96.12.6745 . - DOI - PubMed - PMC
  12. Chan SK, Griffith OL, Tai IT, Jones SJM. Meta-analysis of colorectal cancer gene expression profiling studies identifies consistently reported candidate biomarkers. Cancer Epidemiol Biomark Prev. 2008;17(3):543–52. https://doi.org/10.1158/1055-9965.EPI-07-2615 . - DOI
  13. Birkenkamp-Demtroder K, Christensen LL, Olesen SH, Frederiksen CM, Laiho P, Aaltonen LA, et al. Gene expression in colorectal cancer. Cancer Res. 2002;62(15):4352–63. - PubMed
  14. Dong X, Su YR, Barfield R, Bien SA, He Q, Harrison TA, et al. A general framework for functionally informed set-based analysis: application to a large-scale colorectal cancer study. PLoS Genet. 2020;16(8):e1008947. https://doi.org/10.1371/journal.pgen.1008947 . - DOI - PubMed - PMC
  15. Bosse Y, Li Z, Xia J, Manem V, Carreras-Torres R, Gabriel A, et al. Transcriptome-wide association study reveals candidate causal genes for lung cancer. Int J Cancer. 2020;146(7):1862–78. https://doi.org/10.1002/ijc.32771 . - DOI - PubMed
  16. Fleet JC, DeSmet M, Johnson R, Li Y. Vitamin D and cancer: a review of molecular mechanisms. Biochem J. 2012;441(1):61–76. https://doi.org/10.1042/BJ20110744 . - DOI - PubMed
  17. Protiva P, Pendyala S, Nelson C, Augenlicht LH, Lipkin M, Holt PR. Calcium and 1,25-dihydroxyvitamin D3 modulate genes of immune and inflammatory pathways in the human colon: a human crossover trial. Am J Clin Nutr. 2016;103(5):1224–31. https://doi.org/10.3945/ajcn.114.105304 . - DOI - PubMed - PMC
  18. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin d from the institute of medicine: what clinicians need to know editorial comment. Obstet Gynecol Surv. 2011;66(6):356–7. https://doi.org/10.1097/OGX.0b013e31822c197a . - DOI
  19. Seamans KM, Cashman KD. Existing and potentially novel functional markers of vitamin D status: a systematic review. Am J Clin Nutr. 2009;89(6):1997s–2008s. - DOI
  20. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27. https://doi.org/10.1093/biostatistics/kxj037 . - DOI - PubMed
  21. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–9. https://doi.org/10.1038/nmeth.4197 . - DOI - PubMed - PMC
  22. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521. - DOI
  23. Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009;4(8):1184–91. https://doi.org/10.1038/nprot.2009.97 . - DOI - PubMed - PMC
  24. Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005;21(16):3439–40. https://doi.org/10.1093/bioinformatics/bti525 . - DOI - PubMed
  25. Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376(9736):180–8. https://doi.org/10.1016/S0140-6736(10)60588-0 . - DOI - PubMed - PMC
  26. Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP. Genetics and biology of vitamin D receptor polymorphisms. Gene. 2004;338(2):143–56. https://doi.org/10.1016/j.gene.2004.05.014 . - DOI - PubMed
  27. Staal A, van Wijnen AJ, Birkenhager JC, Pols HA, Prahl J, DeLuca H, et al. Distinct conformations of vitamin D receptor/retinoid X receptor-alpha heterodimers are specified by dinucleotide differences in the vitamin D-responsive elements of the osteocalcin and osteopontin genes. Mol Endocrinol. 1996;10(11):1444–56. https://doi.org/10.1210/mend.10.11.8923469 . - DOI - PubMed
  28. Yamamoto H, Miyamoto K, Li B, Taketani Y, Kitano M, Inoue Y, et al. The caudal-related homeodomain protein Cdx-2 regulates vitamin D receptor gene expression in the small intestine. J Bone Miner Res. 1999;14(2):240–7. https://doi.org/10.1359/jbmr.1999.14.2.240 . - DOI - PubMed
  29. R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013.
  30. Knox S, Harris J, Calton L, Wallace AM. A simple automated solid-phase extraction procedure for measurement of 25-hydroxyvitamin D3 and D2 by liquid chromatography-tandem mass spectrometry. Ann Clin Biochem. 2009;46(Pt 3):226–30. https://doi.org/10.1258/acb.2009.008206 . - DOI - PubMed
  31. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. https://doi.org/10.1093/nar/gkv007 . - DOI - PubMed - PMC
  32. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009;10(1):48. https://doi.org/10.1186/1471-2105-10-48 . - DOI - PubMed - PMC
  33. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118 . - DOI - PubMed - PMC
  34. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50. https://doi.org/10.1073/pnas.0506580102 . - DOI - PubMed - PMC
  35. Berlanga-Taylor AJ, Plant K, Dahl A, Lau E, Hill M, Sims D, et al. Genomic response to vitamin D supplementation in the setting of a randomized, placebo-controlled trial. EBioMedicine. 2018;31:133–42. https://doi.org/10.1016/j.ebiom.2018.04.010 . - DOI - PubMed - PMC
  36. Yanagisawa Y, Takeoka M, Ehara T, Itano N, Miyagawa S, Taniguchi S. Reduction of Calponin h1 expression in human colon cancer blood vessels. Eur J Surg Oncol. 2008;34(5):531–7. https://doi.org/10.1016/j.ejso.2007.05.010 . - DOI - PubMed
  37. Sandberg TP, Oosting J, van Pelt GW, Mesker WE, Tollenaar R, Morreau H. Molecular profiling of colorectal tumors stratified by the histological tumor-stroma ratio - Increased expression of galectin-1 in tumors with high stromal content. Oncotarget. 2018;9(59):31502–15. https://doi.org/10.18632/oncotarget.25845 . - DOI - PubMed - PMC
  38. Xue J, Ge X, Zhao W, Xue L, Dai C, Lin F, et al. PIPKIgamma regulates CCL2 expression in colorectal cancer by activating AKT-STAT3 signaling. J Immunol Res. 2019;2019:3690561. - DOI
  39. Lo PK, Lee JS, Liang X, Han L, Mori T, Fackler MJ, et al. Epigenetic inactivation of the potential tumor suppressor gene FOXF1 in breast cancer. Cancer Res. 2010;70(14):6047–58. https://doi.org/10.1158/0008-5472.CAN-10-1576 . - DOI - PubMed - PMC
  40. Kops GJ, Medema RH, Glassford J, Essers MA, Dijkers PF, Coffer PJ, et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol Cell Biol. 2002;22(7):2025–36. https://doi.org/10.1128/MCB.22.7.2025-2036.2002 . - DOI - PubMed - PMC
  41. Sung JC, McCarthy S, Turner J, Li CG, Yeatman TJ. The NBL1 tumor suppressor gene is downregulated in colon cancer by promoter methylation. J Am Coll Surg. 2006;199(3):S92. - DOI
  42. Romano G, Santi L, Bianco MR, Giuffre MR, Pettinato M, Bugarin C, et al. The TGF-beta pathway is activated by 5-fluorouracil treatment in drug resistant colorectal carcinoma cells. Oncotarget. 2016;7(16):22077–91. https://doi.org/10.18632/oncotarget.7895 . - DOI - PubMed - PMC
  43. Visuttijai K, Pettersson J, Mehrbani Azar Y, van den Bout I, Orndal C, Marcickiewicz J, et al. Lowered expression of tumor suppressor candidate MYO1C stimulates cell proliferation, suppresses cell adhesion and activates AKT. PLoS One. 2016;11(10):e0164063. https://doi.org/10.1371/journal.pone.0164063 . - DOI - PubMed - PMC
  44. Ha TK, Her NG, Lee MG, Ryu BK, Lee JH, Han J, et al. Caveolin-1 increases aerobic glycolysis in colorectal cancers by stimulating HMGA1-mediated GLUT3 transcription. Cancer Res. 2012;72(16):4097–109. https://doi.org/10.1158/0008-5472.CAN-12-0448 . - DOI - PubMed
  45. Badiola I, Olaso E, Crende O, Friedman SL, Vidal-Vanaclocha F. Discoidin domain receptor 2 deficiency predisposes hepatic tissue to colon carcinoma metastasis. Gut. 2012;61(10):1465–72. https://doi.org/10.1136/gutjnl-2011-300810 . - DOI - PubMed
  46. Boulagnon-Rombi C, Schneider C, Leandri C, Jeanne A, Grybek V, Bressenot AM, et al. LRP1 expression in colon cancer predicts clinical outcome. Oncotarget. 2018;9(10):8849–69. https://doi.org/10.18632/oncotarget.24225 . - DOI - PubMed - PMC
  47. Wu JB, Sarmiento AL, Fiset PO, Lazaris A, Metrakos P, Petrillo S, et al. Histologic features and genomic alterations of primary colorectal adenocarcinoma predict growth patterns of liver metastasis. World J Gastroenterol. 2019;25(26):3408–25. https://doi.org/10.3748/wjg.v25.i26.3408 . - DOI - PubMed - PMC
  48. Dasgupta N, Kumar Thakur B, Chakraborty A, Das S. Butyrate-induced in vitro colonocyte differentiation network model identifies ITGB1, SYK, CDKN2A, CHAF1A, and LRP1 as the prognostic markers for colorectal cancer recurrence. Nutr Cancer. 2019;71(2):257–71. https://doi.org/10.1080/01635581.2018.1540715 . - DOI - PubMed
  49. Jiang H, Dong L, Gong F, Gu Y, Zhang H, Fan D, et al. Inflammatory genes are novel prognostic biomarkers for colorectal cancer. Int J Mol Med. 2018;42(1):368–80. https://doi.org/10.3892/ijmm.2018.3631 . - DOI - PubMed - PMC
  50. Luque-Garcia JL, Martinez-Torrecuadrada JL, Epifano C, Canamero M, Babel I, Casal JI. Differential protein expression on the cell surface of colorectal cancer cells associated to tumor metastasis. Proteomics. 2010;10(5):940–52. https://doi.org/10.1002/pmic.200900441 . - DOI - PubMed
  51. Nakajima H, Koizumi K, Tanaka T, Ishigaki Y, Yoshitake Y, Yonekura H, et al. Loss of HITS (FAM107B) expression in cancers of multiple organs: tissue microarray analysis. Int J Oncol. 2012;41(4):1347–57. https://doi.org/10.3892/ijo.2012.1550 . - DOI - PubMed
  52. Slattery ML, Lundgreen A, Wolff RK. MAP kinase genes and colon and rectal cancer. Carcinogenesis. 2012;33(12):2398–408. https://doi.org/10.1093/carcin/bgs305 . - DOI - PubMed - PMC
  53. Ghadimi BM, Grade M, Difilippantonio MJ, Varma S, Simon R, Montagna C, et al. Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J Clin Oncol. 2005;23(9):1826–38. https://doi.org/10.1200/JCO.2005.00.406 . - DOI - PubMed
  54. Slattery ML, Lundgreen A, Bondurant KL, Wolff RK. Tumor necrosis factor-related genes and colon and rectal cancer. Int J Mol Epidemiol Genet. 2011;2(4):328–38. - PubMed - PMC
  55. Meulmeester E, Jochemsen AG. p53: a guide to apoptosis. Curr Cancer Drug Targets. 2008;8(2):87–97. https://doi.org/10.2174/156800908783769337 . - DOI - PubMed
  56. Ju YT, Kwag SJ, Park HJ, Jung EJ, Jeong CY, Jeong SH, et al. Decreased expression of heat shock protein 20 in colorectal cancer and its implication in tumorigenesis. J Cell Biochem. 2015;116(2):277–86. https://doi.org/10.1002/jcb.24966 . - DOI - PubMed
  57. Kim J, Takeuchi H, Lam ST, Turner RR, Wang HJ, Kuo C, et al. Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol. 2005;23(12):2744–53. https://doi.org/10.1200/JCO.2005.07.078 . - DOI - PubMed
  58. Zhou J, Liu M, Zhai Y, Xie W. The antiapoptotic role of pregnane X receptor in human colon cancer cells. Mol Endocrinol. 2008;22(4):868–80. https://doi.org/10.1210/me.2007-0197 . - DOI - PubMed
  59. Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007;81(5):1084–97. https://doi.org/10.1086/521987 . - DOI - PubMed - PMC
  60. Puca R, Nardinocchi L, Givol D, D'Orazi G. Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene. 2010;29(31):4378–87. https://doi.org/10.1038/onc.2010.183 . - DOI - PubMed
  61. Kou Y, Zhang S, Chen X, Hu S. Gene expression profile analysis of colorectal cancer to investigate potential mechanisms using bioinformatics. Onco Targets Ther. 2015;8:745–52. https://doi.org/10.2147/OTT.S78974 . - DOI - PubMed - PMC
  62. Zhou T, Lin W, Zhu Q, Renaud H, Liu X, Li R, et al. The role of PEG3 in the occurrence and prognosis of colon cancer. Onco Targets Ther. 2019;12:6001–12. https://doi.org/10.2147/OTT.S208060 . - DOI - PubMed - PMC
  63. Zhou HM, Fang YY, Weinberger PM, Ding LL, Cowell JK, Hudson FZ, et al. Transgelin increases metastatic potential of colorectal cancer cells in vivo and alters expression of genes involved in cell motility. BMC Cancer. 2016;16(1):55. https://doi.org/10.1186/s12885-016-2105-8 . - DOI - PubMed - PMC
  64. Galamb O, Kalmar A, Peterfia B, Csabai I, Bodor A, Ribli D, et al. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer. Epigenetics. 2016;11(8):588–602. https://doi.org/10.1080/15592294.2016.1190894 . - DOI - PubMed - PMC
  65. Bostick RM. Effects of supplemental vitamin D and calcium on normal colon tissue and circulating biomarkers of risk for colorectal neoplasms. J Steroid Biochem Mol Biol. 2015;148:86–95. https://doi.org/10.1016/j.jsbmb.2015.01.010 . - DOI - PubMed - PMC
  66. Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2018.
  67. Scragg R, Khaw KT, Toop L, Sluyter J, Lawes CMM, Waayer D, et al. Monthly high-dose vitamin D supplementation and cancer risk: a post hoc analysis of the vitamin D assessment randomized clinical trial. JAMA Oncol. 2018;4(11):e182178. https://doi.org/10.1001/jamaoncol.2018.2178 . - DOI - PubMed - PMC
  68. Chandler PD, Chen WY, Ajala ON, Hazra A, Cook N, Bubes V, et al. Effect of vitamin D3 supplements on development of advanced cancer: a secondary analysis of the VITAL randomized clinical trial. JAMA Netw Open. 2020;3(11):e2025850. https://doi.org/10.1001/jamanetworkopen.2020.25850 . - DOI - PubMed - PMC
  69. Baron JA, Barry EL, Mott LA, Rees JR, Sandler RS, Snover DC, et al. A trial of calcium and vitamin D for the prevention of colorectal adenomas. N Engl J Med. 2015;373(16):1519–30. https://doi.org/10.1056/NEJMoa1500409 . - DOI - PubMed - PMC
  70. Vaughan-Shaw PG, Zgaga L, Theodoratou E, Blackmur JP, Dunlop MG. Whether vitamin D supplementation protects against colorectal cancer risk remains an open question. Eur J Cancer. 2019;115:1–3. https://doi.org/10.1016/j.ejca.2019.03.024 . - DOI - PubMed
  71. He Y, Timofeeva M, Farrington SM, Vaughan-Shaw P, Svinti V, Walker M, et al. Exploring causality in the association between circulating 25-hydroxyvitamin D and colorectal cancer risk: a large Mendelian randomisation study. BMC Med. 2018;16(1):142. https://doi.org/10.1186/s12916-018-1119-2 . - DOI - PubMed - PMC
  72. Cornish AJ, Law PJ, Timofeeva M, Palin K, Farrington SM, Palles C, et al. Modifiable pathways for colorectal cancer: a mendelian randomisation analysis. Lancet Gastroenterol Hepatol. 2020;5(1):55–62. https://doi.org/10.1016/S2468-1253(19)30294-8 . - DOI - PubMed
  73. Wagner D, Dias AG, Schnabl K, Van der Kwast T, Vieth R. Determination of 1,25-dihydroxyvitamin D concentrations in human colon tissues and matched serum samples. Anticancer Res. 2012;32(1):259–63. - PubMed
  74. Ryynanen J, Neme A, Tuomainen TP, Virtanen JK, Voutilainen S, Nurmi T, et al. Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals. Mol Nutr Food Res. 2014;58(10):2036–45. https://doi.org/10.1002/mnfr.201400291 . - DOI - PubMed
  75. Gerke AK, Pezzulo AA, Tang F, Cavanaugh JE, Bair TB, Phillips E, et al. Effects of vitamin D supplementation on alveolar macrophage gene expression: preliminary results of a randomized, controlled trial. Multidiscip Respir Med. 2014;9(1):18. https://doi.org/10.1186/2049-6958-9-18 . - DOI - PubMed - PMC
  76. Hossein-nezhad A, Spira A, Holick MF. Influence of vitamin D status and vitamin D3 supplementation on genome wide expression of white blood cells: a randomized double-blind clinical trial. PLoS One. 2013;8(3):e58725. https://doi.org/10.1371/journal.pone.0058725 . - DOI - PubMed - PMC
  77. Saksa N, Neme A, Ryynanen J, Uusitupa M, de Mello VD, Voutilainen S, et al. Dissecting high from low responders in a vitamin D3 intervention study. J Steroid Biochem Mol Biol. 2015;148:275–82. https://doi.org/10.1016/j.jsbmb.2014.11.012 . - DOI - PubMed


Created by admin. Last Modification: Tuesday August 3, 2021 15:15:40 GMT-0000 by admin. (Version 7)

Attached files

ID Name Comment Uploaded Size Downloads
16022 ..rectal mucosa RCT.pdf admin 03 Aug, 2021 1.70 Mb 2892