Molecular mechanism underlying the impact of vitamin D on disease activity of MS.
Ann Clin Transl Neurol. 2014 Aug;1(8):605-17. doi: 10.1002/acn3.91. Epub 2014 Aug 22.
Munger KL1, Köchert K2, Simon KC1, Kappos L3, Polman CH4, Freedman MS5, Hartung HP6, Miller DH7, Montalbán X8, Edan G9, Barkhof F4, Pleimes D2, Sandbrink R10, Ascherio A1, Pohl C11.
Author information
1Harvard School of Public Health Boston, Massachusetts.
2Bayer HealthCare Berlin, Germany.
3University Hospital Basel Basel, Switzerland.
4VU University Medical Center Amsterdam, The Netherlands.
5Ottawa Hospital Research Institute Ottawa, Canada.
6Heinrich-Heine Universität Düsseldorf, Germany.
7UCL Institute of Neurology London, United Kingdom.
8Hospital Universitari Vall d'Hebron Barcelona, Spain.
9CHU-Hôpital Pontchaillou Rennes, France.
10Bayer HealthCare Berlin, Germany ; Heinrich-Heine Universität Düsseldorf, Germany.
11Bayer HealthCare Berlin, Germany ; Department of Neurology, University Hospital of Bonn Bonn, Germany.
OBJECTIVE:
Some previous studies suggest modest to strong effects of 25-hydroxyvitamin D (25(OH)D) on multiple sclerosis (MS) activity. The objective of this study was to explore the mechanistic rationale that may explain potential clinical effects of 25(OH)D.
METHODS:
This study measured serum 25(OH)D levels and global gene expression profiles over a course of up to 2 years in patients starting treatment with interferon beta-1b (IFNB-1b) after a clinically isolated syndrome. MS disease activity was assessed by the number of gadolinium-enhancing lesions present on repeated magnetic resonance imaging (MRIs).
RESULTS:
The number of gadolinium-enhancing lesions was highly significantly associated with 25(OH)D levels. Conducting various systems-level analyses on the molecular level, multiple lines of evidence indicated that 25(OH)D regulates expression dynamics of a large gene-gene interaction system which primarily regulates immune modulatory processes modulating MS activity. The vitamin D response element was significantly enriched in this system, indicating a direct regulation of this gene interaction network through the vitamin D receptor. With increasing 25(OH)D levels, resulting regulation of this system was associated with a decrease in MS activity. Within the complex network of genes that are regulated by 25(OH)D, well-described targets of IFNB-1b and a regulator of sphingosine-1-phosphate bioavailability were found. The 25(OH)D effects on MS activity were additively enhanced by IFNB-1b.
INTERPRETATION:
Here, we provide mechanistic evidence that an unbalanced 25(OH)D gene expression system may affect MS activity. Our findings support a potential benefit of monitoring and managing vitamin D levels (e.g., through supplementation) in early MS patients treated with IFN-beta-1b.
PMID: 25285313
 Download the PDF from VitaminDWiki.
See also VitaminDWiki
The articles in both MS and Genetics are:
- People with Multiple Sclerosis have blunted responses to Vitamin D supplementation - Jan 2024
- Get Multiple Sclerosis while younger if have a poor CYP24A1 vitamin D gene – May 2023
- Vitamin D genes increase MS relapses in children by 2X – May 2019
- CYP2R1 gene problem increases Multiple Sclerosis risk by 1.4X – Dec 2018
- Multiple Sclerosis more likely if poor vitamin D genes - 22nd study – Aug 2017
- Mendelian proof that low vitamin D (due to 3 genes) increase risk of MS by 20 percent – Nov 2016
- Autoimmune risk gene ZMIZ1 is associated with both MS and Vitamin D – Jan 2017
- Multiple Sclerosis relapse in children is twice as likely having a Vitamin D Gene score of 6 – Oct 2016
- Multiple Sclerosis and obesity share some gene problems (as well as low vitamin D) – June 2016
- Genes make Multiple Sclerosis 2X more likely unless get more vitamin D - Aug 2015
- Multiple Sclerosis is connected to Vitamin D by gene to gene interactions – Aug 2014
- Multiple Sclerosis, gene expression, and vitamin D: Venn diagrams – Aug 2014
- Epigenetics of Multiple Sclerosis – March 2014
- Increased risk of multiple sclerosis risk in African Americans due to genes – June 2013
- 98 pcnt of genes that Vitamin D activates to reduce MS are also activated by Interferon -May 2013
- Transgeneration vitamin D deficiency related to MS was found in mice – Aug 2012
- Epigenetics, vitamin D, and Multiple Sclerosis
- Learning about MS and vitamin D in offspring from mice – Sept 2011
- Vitamin D targets 4 MS genes – May 2011
- Unable to find a gene linking vitamin D and MS – March 2011
- MS and vitamin D may be related by HLA gene – March 2010
- MS due to low level of vitamin D may be due to a specific gene – July 2010