Health Risks of Hypovitaminosis D: A Review of New Molecular Insights
Int. J. Mol. Sci. 2018, 19, 892; doi:10.3390/ijms19030892
Daniela Caccamo dcaccamo at unime.it, Sergio Ricca, Monica Currò and Riccardo Ientile
Department of Biomedical Sciences, Dental Sciences, and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy; ricca.sergio85 at gmail.com (S.R.); monica.curro at unime.it (M.C.); ientile at unime.it (R.I.)
- Paper correctly believes that Vitamin D prevents/treats many health problems
- but that Vitamin D has a problem of increasing Calcium in the body
- Their goal is to invent expensive Vitamin D analogs which might not increase Calcium
- Far lower cost solutions which have been used for over a decade include:
- Reduce Calcium intake and Increase water to flush the Calcium out of the body
- Increase Vitamin K2 to decrease excess Calcium from being deposited where it is harmful
- Intervention category listing has
824 items along with related searches - Proof that Vitamin D Works: 87 health problems as of Sept 2018
Genetics has a chart which show the VDR and CYP27B1 (and 3 others not seen by Vitamin D test)
Vitamin D Receptor category has the following
531 studies in Vitamin D Receptor category Vitamin D tests cannot detect Vitamin D Receptor (VDR) problems
See also:
A poor VDR restricts Vitamin D from getting in the cells48 studies in the Resveratrol category It appears that 30% of the population have a poor VDR (40% of the Obese )
Health problems include: Autoimmune (
Several diseases protect themselves by deactivating the Vitamin D receptor. Example: Breast Cancer
- - - - - - - -
The Vitamin D Receptor is associated with many health problems19 studies), Breast Cancer ( 24 studies), Colon Cancer ( 14 studies), Cardiovascular ( 23 studies), Cognition ( 16 studies), Diabetes ( 24 studies), Hypertension ( 9 studies), Infant ( 22 studies), Lupus ( 6 studies), Metabolic Syndrome ( 4 studies), Mortality ( 4 studies), Multiple Sclerosis ( 14 studies), Obesity ( 17 studies), Pregnancy ( 24 studies), Rheumatoid Arthritis ( 10 studies), TB ( 8 studies), VIRUS ( 37 studies), Click here for details
Some health problems, such as Breast Cancer, Diabetes, and COVID protect themselves by reducing VDR activation
55 health problems associated with poor VDR
A poor VDR is associated with the risk of 55 health problems click here for details
The risk of 48 diseases at least double with poor VDR as of Jan 2023 click here for details
Some health problem, such as Breast Cancer reduce the VDRVDR at-home test $29 - results not easily understood in 2016
There are hints that you may have inherited a poor VDR
How to increase VDR activation
Compensate for poor VDR by increasing one or more:Increasing Increases 1) Vitamin D supplement Sun
Ultraviolet -BVitamin D in the blood
and thus in the cells2) Magnesium Vitamin D in the blood
AND in the cells3) Omega-3 Vitamin D in the cells 4) Resveratrol Vitamin D Receptor 5) Intense exercise Vitamin D Receptor 6) Get prescription for VDR activator
paricalcitol, maxacalcitol?Vitamin D Receptor 7) Quercetin (flavonoid) Vitamin D Receptor 8) Zinc is in the VDR Vitamin D Receptor 9) Boron Vitamin D Receptor ?,
etc10) Essential oils e.g. ginger, curcumin Vitamin D Receptor 11) Progesterone Vitamin D Receptor 12) Infrequent high concentration Vitamin D
Increases the concentration gradientVitamin D Receptor 13) Sulfroaphane and perhaps sulfur Vitamin D Receptor 14) Butyrate especially gut Vitamin D Receptor 15) Berberine Vitamin D Receptor Note: If you are not feeling enough benefit from Vitamin D, you might try increasing VDR activation. You might feel the benefit within days of adding one or more of the above
Far healthier and stronger at age 72 due to supplements Includes 6 supplements that help the VDR
Increased risk of diseases if poor VDR
Increased risk associated with a poor Vitamin D Receptor
Note: Some diseases reduce VDR activation
those with a * are known to decrease activation Download the PDF from VitaminDWiki
Hypovitaminosis D has become a pandemic, being observed in all ethnicities and age groups worldwide. Environmental factors, such as increased air pollution and reduced ultraviolet B (UVB) irradiation, as well as lifestyle factors, i.e., decreased outdoor activities and/or poor intake of vitamin D-rich food, are likely involved in the etiology of a dramatic reduction of vitamin D circulating levels. The insufficiency/deficiency of vitamin D has long been known for its association with
- osteoporosis and
- rickets.
However, in the last few decades it has become a serious public health concern since it has been shown to be independently associated with various chronic pathological conditions such as
- cancer,
- coronary heart disease,
- neurological diseases,
- type II diabetes,
- autoimmune diseases,
- depression, with
- various inflammatory disorders, and with
- increased risk for all-cause mortality in the general population.
Prevention strategies for these disorders have recently involved supplementation with either vitamin D2 or vitamin D3 or their analogs at required daily doses and tolerable upper-limit levels. This review will focus on the emerging evidence about non-classical biological functions of vitamin D in various disorders.
Conclusions and Perspectives (from PDF)
In recent years, thousands of VDRE sites on the DNA sequence have been identified. Given the almost ubiquitous expression of VDR and CYP27B1, a great effort still has to be made to characterize molecular pathways regulated through genomic and non-genomic actions of this vitamin. Moreover, it is also very important to look for strategies to target specific cells with vitamin D analogs that do not display adverse side effects, such as increased intestinal calcium absorption and/or bone resorption. At present, analogs have been developed only for the therapeutic management of osteoporosis, hyperparathyroidism, and skin hyperproliferative disorders [10]. However, there is still a great demand for solid data from randomized clinical trials aimed at the treatment/prevention of cancer, CVD, neurodegenerative disorders, infections, and autoimmune diseases.
Findings from genome-wide analyses suggest the occurrence of several variants of key proteins of vitamin D metabolism that may affect circulating concentrations of vitamin D metabolites. These proteins include VDR, DBP, and 7-dehydrocholesterol synthase [6].
It is reasonable to expect in the near future that these protein variants will be in vivo detected and the above cited issues will be overcome, so that the management of disorders developing in association with vitamin D deficiency will be greatly improved.Many health risks associated with low Vit D or poor Vitamin D Receptor – more RCT needed – March 20189602 visitors, last modified 18 Sep, 2018, This page is in the following categories (# of items in each category)