Toggle Health Problems and D

Hashimoto's thyroiditis: Vitamin D was the most important of 11 variables – Aug 2022

Prediction models constructed for Hashimoto's thyroiditis risk based on clinical and laboratory factors

Front Endocrinol (Lausanne) . 2022 Aug 8;13:886953. doi: 10.3389/fendo.2022.886953
Peng Li 1 , Fang Liu 2 , Minsu Zhao 3 , Shaokai Xu 1 , Ping Li 1 , Jingang Cao 1 , Dongming Tian 1 , Yaopeng Tan 1 , Lina Zheng 2 , Xia Cao 2 , Yingxia Pan 4 5 , Hui Tang 4 5 , Yuanyuan Wu 4 5 , Yi Sun 1

Background: Hashimoto's thyroiditis (HT) frequently occurs among autoimmune diseases and may simultaneously appear with thyroid cancer. However, it is difficult to diagnose HT at an early stage just by clinical symptoms. Thus, it is urgent to integrate multiple clinical and laboratory factors for the early diagnosis and risk prediction of HT.

Methods: We recruited 1,303 participants, including 866 non-HT controls and 437 diagnosed HT patients. 44 HT patients also had thyroid cancer. Firstly, we compared the difference in thyroid goiter degrees between controls and patients. Secondly, we collected 15 factors and analyzed their significant differences between controls and HT patients, including age, body mass index, gender, history of diabetes, degrees of thyroid goiter, UIC, 25-(OH)D, FT3, FT4, TSH, TAG, TC, FPG, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Thirdly, logistic regression analysis demonstrated the risk factors for HT. For machine learning modeling of HT and thyroid cancer, we conducted the establishment and evaluation of six models in training and test sets.

Results: The degrees of thyroid goiter were significantly different among controls, HT patients without cancer (HT-C), and HT patients with thyroid cancer (HT+C). Most factors had significant differences between controls and patients. Logistic regression analysis confirmed diabetes, UIC, FT3, and TSH as important risk factors for HT. The AUC scores of XGBoost, LR, SVM, and MLP models indicated appropriate predictive power for HT. The features were arranged by their importance, among which, 25-(OH)D, FT4, and TSH were the top three high-ranking factors.

Conclusions: We firstly analyzed comprehensive factors of HT patients. The proposed machine learning modeling, combined with multiple factors, are efficient for thyroid diagnosis. These discoveries will extensively promote precise diagnosis, personalized therapies, and reduce unnecessary cost for thyroid diseases.
 Download the PDF from VitaminDWiki

VitaminDWiki pages with HASHIMOTO in title (8 as of Aug 2022)

This list is automatically updated

Items found: 8

Created by admin. Last Modification: Sunday August 28, 2022 01:42:41 GMT-0000 by admin. (Version 3)

Attached files

ID Name Comment Uploaded Size Downloads
18342 Importance.jpg admin 27 Aug, 2022 76.38 Kb 241
18341 Hashimoto's AI Vitamin D.pdf admin 27 Aug, 2022 978.88 Kb 138