Loading...
 
Toggle Health Problems and D

Early brain development helped by Iron, Iodine, Vitamin D, Omega-3. Zinc etc. – Oct 2021

Nutrition and Brain Development

Brain development Curr Top Behav Neurosci . 2021 Oct 8. doi: 10.1007/7854_2021_244
Sarah E Cusick 1, Amanda Barks 2, Michael K Georgieff 2

VitaminDWiki

Items in both categories Cognitive and Pregancy

Items in both categories Cognitive and Infants

Items in both categories Cognitive and Omega-3

Cognitive category starts with the following

Very brief summary of Cognitive decline
Treatment : Vitamin D intervention slows or stops progression
Prevention : Many observational studies - perhaps Vitamin D prevents
Omega-3 both prevents and treats cognition
Wonder the benefits if both Vitamin D AND Omega-3 were to be used
Dementia page - 50 items

373 items in Cognition category

see also Overview Alzheimer's-Cognition and Vitamin D
Overview Parkinson's and Vitamin D

Studies in both categories of Cognition and:
Cardiovascular (7 studies), Genetics (9 studies), Vitamin D Receptor (16 studies), Omega-3 (49 studies), Intervention (19 studies), Meta-analyses (22 studies), Depression (23 studies), Parkinson's (22 studies)
Click here for details

Poor cognition 26 percent more likely if low Vitamin D (29 studies) – meta-analysis July 2017
Every schizophrenia measure was improved when vitamin D levels were normalized – June 2021
Cognitive Impairment and Dementia often associated with low Vitamin D – April 2020
IQ levels around the world are falling (perhaps lower Vitamin D, Iodine, or Omega-3)
Search VitaminDWiki for "WHITE MATTER" 325 items as of March 2023

Types of evidence that Vitamin D helps brain problems - 2014
https://vitamindwiki.com/tiki-index.php?page_id=8392


All nutrients are essential for brain development, but pre-clinical and clinical studies have revealed sensitive periods of brain development during which key nutrients are critical. An understanding of these nutrient-specific sensitive periods and the accompanying brain regions or processes that are developing can guide effective nutrition interventions as well as the choice of meaningful circuit-specific neurobehavioral tests to best determine outcome. For several nutrients including

  • protein,
  • iron,
  • iodine, and
  • choline,

pre-clinical and clinical studies align to identify the same sensitive periods, while for other nutrients, such as

  • Long-chain polyunsaturated fatty acids,
  • zinc, and
  • vitamin D,

pre-clinical models demonstrate benefit which is not consistently shown in clinical studies. This discordance of pre-clinical and clinical results is potentially due to key differences in the timing, dose, and/or duration of the nutritional intervention as well as the pre-existing nutritional status of the target population. In general, however, the optimal window of success for nutritional intervention to best support brain development is in late fetal and early postnatal life. Lack of essential nutrients during these times can lead to long-lasting dysfunction and significant loss of developmental potential.

References

  1. Adamo AM, Oteiza PI (2010) Zinc deficiency and neurodevelopment: the case of neurons. BioFactors Oxf Engl 36(2):117–124. https://doi.org/10.1002/biof.91
  2. Alam MA, Richard SA, Fahim SM et al (2020) Impact of early-onset persistent stunting on cognitive development at 5 years of age: results from a multi-country cohort study. PLoS One 15(1):e0227839. https://doi.org/10.1371/journal.pone.0227839
  3. Alexander EK, Pearce EN, Brent GA et al (2017) 2017 guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid Off J Am Thyroid Assoc 27(3):315–389. https://doi.org/10.1089/thy.2016.0457
  4. Algarín C, Nelson CA, Peirano P, Westerlund A, Reyes S, Lozoff B (2013) Iron-deficiency anemia in infancy and poorer cognitive inhibitory control at age 10 years. Dev Med Child Neurol 55(5):453–458. https://doi.org/10.1111/dmcn.12118
  5. Andrew MJ, Parr JR, Montague-Johnson C et al (2018) Neurodevelopmental outcome of nutritional intervention in newborn infants at risk of neurodevelopmental impairment: the Dolphin neonatal double-blind randomized controlled trial. Dev Med Child Neurol 60(9):897–905. https://doi.org/10.1111/dmcn.13914
  6. Angulo-Barroso RM, Li M, Santos DCC et al (2016) Iron supplementation in pregnancy or infancy and motor development: a randomized controlled trial. Pediatrics 137(4):e20153547. https://doi.org/10.1542/peds.2015-3547
  7. Bahnfleth C, Canfield R, Nevins J, Caudill M, Strupp B (2019) Prenatal choline supplementation improves child color-location memory task performance at 7 Y of age (FS05-01-19). Curr Dev Nutr 3(Suppl 1). https://doi.org/10.1093/cdn/nzz052.FS05-01-19
  8. Barnard ND, Willett WC, Ding EL (2017) The misuse of meta-analysis in nutrition research. JAMA 318(15):1435–1436. https://doi.org/10.1001/jama.2017.12083
  9. Bastian TW (2019) Potential mechanisms driving mitochondrial motility impairments in developing iron-deficient neurons. J Exp Neurosci 13:1179069519858351. https://doi.org/10.1177/1179069519858351
  10. Bastian TW, von Hohenberg WC, Mickelson DJ, Lanier LM, Georgieff MK (2016) Iron deficiency impairs developing hippocampal neuron gene expression, energy metabolism, and dendrite complexity. Dev Neurosci 38(4):264–276. https://doi.org/10.1159/000448514
  11. Bastian TW, Rao R, Tran PV, Georgieff MK (2020) The effects of early-life Iron deficiency on brain energy metabolism. Neurosci Insights 15:2633105520935104. https://doi.org/10.1177/2633105520935104
  12. Bell MA, Ross AP, Goodman G (2016) Assessing infant cognitive development after prenatal iodine supplementation. Am J Clin Nutr 104(Suppl 3):928S–934S. https://doi.org/10.3945/ajcn.115.110411
  13. Benolken RM, Anderson RE, Wheeler TG (1973) Membrane fatty acids associated with the electrical response in visual excitation. Science 182(4118):1253–1254. https://doi.org/10.1126/science.182.4118.1253
  14. Berbel P, Mestre JL, Santamaría A et al (2009) Delayed neurobehavioral development in children born to pregnant women with mild hypothyroxinemia during the first month of gestation: the importance of early iodine supplementation. Thyroid Off J Am Thyroid Assoc 19(5):511–519. https://doi.org/10.1089/thy.2008.0341
  15. Bernal J (2000) Thyroid hormones in brain development and function. In: Feingold KR, Anawalt B, Boyce A et al (eds) Endotext. MDText.com, Inc. http://www.ncbi.nlm.nih.gov/books/NBK285549/
  16. Birch EE, Birch DG, Hoffman DR, Uauy R (1992) Dietary essential fatty acid supply and visual acuity development. Invest Ophthalmol Vis Sci 33(11):3242–3253
  17. Birch EE, Carlson SE, Hoffman DR et al (2010) The DIAMOND (DHA intake and measurement of neural development) study: a double-masked, randomized controlled clinical trial of the maturation of infant visual acuity as a function of the dietary level of docosahexaenoic acid. Am J Clin Nutr 91(4):848–859. https://doi.org/10.3945/ajcn.2009.28557
  18. Boeke CE, Gillman MW, Hughes MD, Rifas-Shiman SL, Villamor E, Oken E (2013) Choline intake during pregnancy and child cognition at age 7 years. Am J Epidemiol 177(12):1338–1347. https://doi.org/10.1093/aje/kws395
  19. Bougma K, Aboud FE, Harding KB, Marquis GS (2013) Iodine and mental development of children 5 years old and under: a systematic review and meta-analysis. Nutrients 5(4):1384–1416. https://doi.org/10.3390/nu5041384
  20. Brenna JT (2011) Animal studies of the functional consequences of suboptimal polyunsaturated fatty acid status during pregnancy, lactation and early post-natal life. Matern Child Nutr 7(Suppl 2):59–79. https://doi.org/10.1111/j.1740-8709.2011.00301.x
  21. Brenna JT (2016) Long-chain polyunsaturated fatty acids and the preterm infant: a case study in developmentally sensitive nutrient needs in the United States. Am J Clin Nutr 103(2):606S–615S. https://doi.org/10.3945/ajcn.114.103994
  22. Brucker-Davis F, Ganier-Chauliac F, Gal J et al (2015) Neurotoxicant exposure during pregnancy is a confounder for assessment of iodine supplementation on neurodevelopment outcome. Neurotoxicol Teratol 51:45–51. https://doi.org/10.1016/j.ntt.2015.07.009
  23. Cannell JJ (2017) vitamin D and autism, what’s new? Rev Endocr Metab Disord 18(2):183–193. https://doi.org/10.1007/s11154-017-9409-0
  24. Carlson SE, Colombo J (2016) Docosahexaenoic acid and arachidonic acid nutrition in early development. Adv Pediatr Infect Dis 63(1):453–471. https://doi.org/10.1016/j.yapd.2016.04.011
  25. Carlson SE, Werkman SH, Rhodes PG, Tolley EA (1993) Visual-acuity development in healthy preterm infants: effect of marine-oil supplementation. Am J Clin Nutr 58(1):35–42. https://doi.org/10.1093/ajcn/58.1.35
  26. Carlson ES, Tkac I, Magid R et al (2009) Iron is essential for neuron development and memory function in mouse hippocampus. J Nutr 139(4):672–679. https://doi.org/10.3945/jn.108.096354
  27. Caudill MA, Strupp BJ, Muscalu L, Nevins JEH, Canfield RL (2018) Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study. FASEB J Off Publ Fed Am Soc Exp Biol 32(4):2172–2180. https://doi.org/10.1096/fj.201700692RR
  28. Caulfield LE, Putnick DL, Zavaleta N et al (2010) Maternal gestational zinc supplementation does not influence multiple aspects of child development at 54 mo of age in Peru. Am J Clin Nutr 92(1):130–136. https://doi.org/10.3945/ajcn.2010.29407
  29. CDC (1998) Recommendations to prevent and control iron deficiency in the United States. https://www.cdc.gov/mmwr/preview/mmwrhtml/00051880.htm . Accessed 28 Jan 2021
  30. Chaparro CM (2011) Timing of umbilical cord clamping: effect on iron endowment of the newborn and later iron status. Nutr Rev 69(Suppl 1):S30–S36. https://doi.org/10.1111/j.1753-4887.2011.00430.x
  31. Cheatham CL, Goldman BD, Fischer LM, da Costa K-A, Reznick JS, Zeisel SH (2012) Phosphatidylcholine supplementation in pregnant women consuming moderate-choline diets does not enhance infant cognitive function: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr 96(6):1465–1472. https://doi.org/10.3945/ajcn.112.037184
  32. Chowdhury R, Taneja S, Kvestad I, Hysing M, Bhandari N, Strand TA (2020) vitamin D status in early childhood is not associated with cognitive development and linear growth at 6-9 years of age in North Indian children: a cohort study. Nutr J 19(1):14. https://doi.org/10.1186/s12937-020-00530-2
  33. Christian P, Murray-Kolb LE, Khatry SK et al (2010) Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in Nepal. JAMA 304(24):2716–2723. https://doi.org/10.1001/jama.2010.1861
  34. Christian P, Morgan ME, Murray-Kolb L et al (2011) Preschool iron-folic acid and zinc supplementation in children exposed to iron-folic acid in utero confers no added cognitive benefit in early school-age. J Nutr 141(11):2042–2048. https://doi.org/10.3945/jn.111.146480
  35. Clardy SL, Wang X, Zhao W et al (2006) Acute and chronic effects of developmental iron deficiency on mRNA expression patterns in the brain. J Neural Transm Suppl 71:173–196. https://doi.org/10.1007/978-3-211-33328-0_19
  36. Colombo J, Carlson SE, Cheatham CL et al (2013) Long-term effects of LCPUFA supplementation on childhood cognitive outcomes. Am J Clin Nutr 98(2):403–412. https://doi.org/10.3945/ajcn.112.040766
  37. Colombo J, Zavaleta N, Kannass KN et al (2014) Zinc supplementation sustained normative neurodevelopment in a randomized, controlled trial of Peruvian infants aged 6-18 months. J Nutr 144(8):1298–1305. https://doi.org/10.3945/jn.113.189365
  38. Colombo J, Gustafson KM, Gajewski BJ et al (2016) Prenatal DHA supplementation and infant attention. Pediatr Res 80(5):656–662. https://doi.org/10.1038/pr.2016.134
  39. Colombo J, Shaddy DJ, Gustafson K et al (2019) The Kansas University DHA Outcomes Study (KUDOS) clinical trial: long-term behavioral follow-up of the effects of prenatal DHA supplementation. Am J Clin Nutr 109(5):1380–1392. https://doi.org/10.1093/ajcn/nqz018
  40. Connor JR, Menzies SL (1996) Relationship of iron to oligodendrocytes and myelination. Glia 17(2):83–93. https://doi.org/10.1002/(SICI)1098-1136(199606)17:2<83::AID-GLIA1>3.0.CO;2-7
  41. Cusick SE, Georgieff MK (2016) The role of nutrition in brain development: the Golden opportunity of the “first 1000 days”. J Pediatr 175:16–21. https://doi.org/10.1016/j.jpeds.2016.05.013
  42. Cusick SE, Georgieff MK, Rao R (2018) Approaches for reducing the risk of early-life iron deficiency-induced brain dysfunction in children. Nutrients 10(2). https://doi.org/10.3390/nu10020227
  43. Das UN (2003) Long-chain polyunsaturated fatty acids in the growth and development of the brain and memory. Nutrition 19(1):62–65. https://doi.org/10.1016/S0899-9007(02)00852-3
  44. Delgado-Noguera MF, Calvache JA, Cosp XB, Kotanidou EP, Galli-Tsinopoulou A (2015) Supplementation with long chain polyunsaturated fatty acids (LCPUFA) to breastfeeding mothers for improving child growth and development. Cochrane Database Syst Rev 7. https://doi.org/10.1002/14651858.CD007901.pub3
  45. Derbyshire E, Obeid R (2020) Choline, neurological development and brain function: a systematic review focusing on the first 1000 days. Nutrients 12(6). https://doi.org/10.3390/nu12061731
  46. Desouza LA, Sathanoori M, Kapoor R et al (2011) Thyroid hormone regulates the expression of the sonic hedgehog signaling pathway in the embryonic and adult mammalian brain. Endocrinology 152(5):1989–2000. https://doi.org/10.1210/en.2010-1396
  47. Dineva M, Fishpool H, Rayman MP, Mendis J, Bath SC (2020) Systematic review and meta-analysis of the effects of iodine supplementation on thyroid function and child neurodevelopment in mildly-to-moderately iodine-deficient pregnant women. Am J Clin Nutr 112(2):389–412. https://doi.org/10.1093/ajcn/nqaa071
  48. Dong J, Yin H, Liu W, Wang P, Jiang Y, Chen J (2005) Congenital iodine deficiency and hypothyroidism impair LTP and decrease C-fos and C-jun expression in rat hippocampus. Neurotoxicology 26(3):417–426. https://doi.org/10.1016/j.neuro.2005.03.003
  49. Eyles D, Burne T, McGrath J (2011) vitamin D in fetal brain development. Semin Cell Dev Biol 22(6):629–636. https://doi.org/10.1016/j.semcdb.2011.05.004
  50. Fisher AL, Nemeth E (2017) Iron homeostasis during pregnancy. Am J Clin Nutr 106(Suppl 6):1567S–1574S. https://doi.org/10.3945/ajcn.117.155812
  51. Frederickson CJ, Koh J-Y, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6(6):449–462. https://doi.org/10.1038/nrn1671
  52. Fretham SJB, Carlson ES, Georgieff MK (2011) The role of iron in learning and memory. Adv Nutr Bethesda Md 2(2):112–121. https://doi.org/10.3945/an.110.000190
  53. Fretham SJB, Carlson ES, Wobken J, Tran PV, Petryk A, Georgieff MK (2012) Temporal manipulation of transferrin-receptor-1 dependent iron uptake identifies a sensitive period in mouse hippocampal neurodevelopment. Hippocampus 22(8):1691–1702. https://doi.org/10.1002/hipo.22004
  54. Geng F, Mai X, Zhan J et al (2015) Impact of fetal-neonatal iron deficiency on recognition memory at 2 months of age. J Pediatr 167(6):1226–1232. https://doi.org/10.1016/j.jpeds.2015.08.035
  55. Geng F, Mai X, Zhan J et al (2020) Timing of iron deficiency and recognition memory in infancy. Nutr Neurosci 0(0):1–10. https://doi.org/10.1080/1028415X.2019.1704991
  56. Georgieff MK (2020) Iron deficiency in pregnancy. Am J Obstet Gynecol 223(4):516–524. https://doi.org/10.1016/j.ajog.2020.03.006
  57. Georgieff MK, Landon MB, Mills MM et al (1990) Abnormal iron distribution in infants of diabetic mothers: spectrum and maternal antecedents. J Pediatr 117(3):455–461. https://doi.org/10.1016/s0022-3476(05)81097-2
  58. Georgieff MK, Ramel SE, Cusick SE (2018) Nutritional influences on brain development. Acta Paediatr 107(8):1310–1321. https://doi.org/10.1111/apa.14287
  59. Giannocco G, Kizys MML, Maciel RM, de Souza JS (2020) Thyroid hormone, gene expression, and central nervous system: where we are. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2020.09.007
  60. Gilbert ME, Sanchez-Huerta K, Wood C (2016) Mild thyroid hormone insufficiency during development compromises activity-dependent neuroplasticity in the hippocampus of adult male rats. Endocrinology 157(2):774–787. https://doi.org/10.1210/en.2015-1643
  61. Gogia S, Sachdev HS (2012) Zinc supplementation for mental and motor development in children. Cochrane Database Syst Rev 12:CD007991. https://doi.org/10.1002/14651858.CD007991.pub2
  62. Golub MS, Takeuchi PT, Keen CL, Gershwin ME, Hendrickx AG, Lonnerdal B (1994) Modulation of behavioral performance of prepubertal monkeys by moderate dietary zinc deprivation. Am J Clin Nutr 60(2):238–243. https://doi.org/10.1093/ajcn/60.2.238
  63. Golub MS, Hogrefe CE, Germann SL, Capitanio JP, Lozoff B (2006) Behavioral consequences of developmental iron deficiency in infant rhesus monkeys. Neurotoxicol Teratol 28(1):3–17. https://doi.org/10.1016/j.ntt.2005.10.005
  64. Gordon RC, Rose MC, Skeaff SA, Gray AR, Morgan KMD, Ruffman T (2009) Iodine supplementation improves cognition in mildly iodine-deficient children. Am J Clin Nutr 90(5):1264–1271. https://doi.org/10.3945/ajcn.2009.28145
  65. Gould JF, Makrides M, Colombo J, Smithers LG (2014) Randomized controlled trial of maternal omega-3 long-chain PUFA supplementation during pregnancy and early childhood development of attention, working memory, and inhibitory control. Am J Clin Nutr 99(4):851–859. https://doi.org/10.3945/ajcn.113.069203
  66. Gowachirapant S, Jaiswal N, Melse-Boonstra A et al (2017) Effect of iodine supplementation in pregnant women on child neurodevelopment: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 5(11):853–863. https://doi.org/10.1016/S2213-8587(17)30332-7
  67. Gower-Winter SD, Levenson CW (2012) Zinc in the central nervous system: from molecules to behavior. BioFactors Oxf Engl 38(3):186–193. https://doi.org/10.1002/biof.1012
  68. Grabrucker S, Jannetti L, Eckert M et al (2014) Zinc deficiency dysregulates the synaptic ProSAP/Shank scaffold and might contribute to autism spectrum disorders. Brain J Neurol 137(Pt 1):137–152. https://doi.org/10.1093/brain/awt303
  69. Grecksch G, Rüthrich H, Höllt V, Becker A (2009) Transient prenatal vitamin D deficiency is associated with changes of synaptic plasticity in the dentate gyrus in adult rats. Psychoneuroendocrinology 34(Suppl 1):S258–S264. https://doi.org/10.1016/j.psyneuen.2009.07.004
  70. Grissom NM, Reyes TM (2013) Gestational overgrowth and undergrowth affect neurodevelopment: similarities and differences from behavior to epigenetics. Int J Dev Neurosci Off J Int Soc Dev Neurosci 31(6):406–414. https://doi.org/10.1016/j.ijdevneu.2012.11.006
  71. Hadders-Algra M (2011) Prenatal and early postnatal supplementation with long-chain polyunsaturated fatty acids: neurodevelopmental considerations. Am J Clin Nutr 94(6 Suppl):1874S–1879S. https://doi.org/10.3945/ajcn.110.001065
  72. Harding KB, Peña-Rosas JP, Webster AC et al (2017) Iodine supplementation for women during the preconception, pregnancy and postpartum period. Cochrane Database Syst Rev 3:CD011761. https://doi.org/10.1002/14651858.CD011761.pub2
  73. Hensch TK (2004) Critical period regulation. Annu Rev Neurosci 27:549–579. https://doi.org/10.1146/annurev.neuro.27.070203.144327
  74. Hu Y-D, Pang W, He C-C et al (2017) The cognitive impairment induced by zinc deficiency in rats aged 0∼2 months related to BDNF DNA methylation changes in the hippocampus. Nutr Neurosci 20(9):519–525. https://doi.org/10.1080/1028415X.2016.1194554
  75. Insel BJ, Schaefer CA, McKeague IW, Susser ES, Brown AS (2008) Maternal iron deficiency and the risk of schizophrenia in offspring. Arch Gen Psychiatry 65(10):1136–1144. https://doi.org/10.1001/archpsyc.65.10.1136
  76. Isaacs EB, Ross S, Kennedy K, Weaver LT, Lucas A, Fewtrell MS (2011) 10-year cognition in preterms after random assignment to fatty acid supplementation in infancy. Pediatrics 128(4):e890–e898. https://doi.org/10.1542/peds.2010-3153
  77. Jacobson SW, Carter RC, Molteno CD et al (2018) Efficacy of maternal choline supplementation during pregnancy in mitigating adverse effects of prenatal alcohol exposure on growth and cognitive function: a randomized, double-blind, placebo-controlled clinical trial. Alcohol Clin Exp Res 42(7):1327–1341. https://doi.org/10.1111/acer.13769
  78. Jasani B, Simmer K, Patole SK, Rao SC (2017) Long chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst Rev 3(3):CD000376. https://doi.org/10.1002/14651858.CD000376.pub4
  79. Jayasinghe C, Polson R, van Woerden HC, Wilson P (2018) The effect of universal maternal antenatal iron supplementation on neurodevelopment in offspring: a systematic review and meta-analysis. BMC Pediatr 18. https://doi.org/10.1186/s12887-018-1118-7
  80. Jorgenson LA, Wobken JD, Georgieff MK (2003) Perinatal iron deficiency alters apical dendritic growth in hippocampal CA1 pyramidal neurons. Dev Neurosci 25(6):412–420. https://doi.org/10.1159/000075667
  81. Jorgenson LA, Sun M, O’Connor M, Georgieff MK (2005) Fetal iron deficiency disrupts the maturation of synaptic function and efficacy in area CA1 of the developing rat hippocampus. Hippocampus 15(8):1094–1102. https://doi.org/10.1002/hipo.20128
  82. Joss-Moore LA, Albertine KH, Lane RH (2011) Epigenetics and the developmental origins of lung disease. Mol Genet Metab 104(1–2):61–66. https://doi.org/10.1016/j.ymgme.2011.07.018
  83. Kable JA, Coles CD, Keen CL et al (2015) The impact of micronutrient supplementation in alcohol-exposed pregnancies on information processing skills in Ukrainian infants. Alcohol Fayettev N 49(7):647–656. https://doi.org/10.1016/j.alcohol.2015.08.005
  84. Ke X, Schober ME, McKnight RA et al (2010) Intrauterine growth retardation affects expression and epigenetic characteristics of the rat hippocampal glucocorticoid receptor gene. Physiol Genomics 42(2):177–189. https://doi.org/10.1152/physiolgenomics.00201.2009
  85. Ke X, Xing B, Yu B et al (2014) IUGR disrupts the PPARγ-Setd8-H4K20me(1) and Wnt signaling pathways in the juvenile rat hippocampus. Int J Dev Neurosci Off J Int Soc Dev Neurosci 38:59–67. https://doi.org/10.1016/j.ijdevneu.2014.07.008
  86. Kennedy BC, Dimova JG, Siddappa AJM, Tran PV, Gewirtz JC, Georgieff MK (2014) Prenatal choline supplementation ameliorates the long-term neurobehavioral effects of fetal-neonatal iron deficiency in rats. J Nutr 144(11):1858–1865. https://doi.org/10.3945/jn.114.198739
  87. King JC, Brown KH, Gibson RS et al (2015) Biomarkers of nutrition for development (BOND)-zinc review. J Nutr 146(4):858S–885S. https://doi.org/10.3945/jn.115.220079
  88. Kretchmer N, Beard JL, Carlson S (1996) The role of nutrition in the development of normal cognition. Am J Clin Nutr 63(6):997S–1001S. https://doi.org/10.1093/ajcn/63.6.997
  89. Kumar V, Kumar A, Singh K, Avasthi K, Kim J-J (2021) Neurobiology of zinc and its role in neurogenesis. Eur J Nutr. https://doi.org/10.1007/s00394-020-02454-3
  90. Kuzawa CW (1998) Adipose tissue in human infancy and childhood: an evolutionary perspective. Am J Phys Anthropol Suppl 27:177–209. https://doi.org/10.1002/(sici)1096-8644(1998)107:27+<177::aid-ajpa7>3.0.co;2-b
  91. Lardner AL (2015) vitamin D and hippocampal development-the story so far. Front Mol Neurosci 8:58. https://doi.org/10.3389/fnmol.2015.00058
  92. Lazarus J, Brown RS, Daumerie C, Hubalewska-Dydejczyk A, Negro R, Vaidya B (2014) 2014 European thyroid association guidelines for the management of subclinical hypothyroidism in pregnancy and in children. Eur Thyroid J 3(2):76–94. https://doi.org/10.1159/000362597
  93. Leonard WR, Robertson ML, Snodgrass JJ, Kuzawa CW (2003) Metabolic correlates of hominid brain evolution. Comp Biochem Physiol A Mol Integr Physiol 136(1):5–15. https://doi.org/10.1016/s1095-6433(03)00132-6
  94. Lepping RJ, Honea RA, Martin LE et al (2019) Long chain polyunsaturated fatty acid supplementation in the first year of life affects brain function, structure, and metabolism at age nine years. Dev Psychobiol 61(1):5–16. https://doi.org/10.1002/dev.21780
  95. Lisi G, Ribolsi M, Siracusano A, Niolu C (2020) Maternal vitamin D and its role in determining fetal origins of mental health. Curr Pharm Des 26(21):2497–2509. https://doi.org/10.2174/1381612826666200506093858
  96. Liu J, Liu L, Chen H (2011) Antenatal taurine supplementation for improving brain ultrastructure in fetal rats with intrauterine growth restriction. Neuroscience 181:265–270. https://doi.org/10.1016/j.neuroscience.2011.02.056
  97. Liu J, Liu Y, Wang X-F, Chen H, Yang N (2013) Antenatal taurine supplementation improves cerebral neurogenesis in fetal rats with intrauterine growth restriction through the PKA-CREB signal pathway. Nutr Neurosci 16(6):282–287. https://doi.org/10.1179/1476830513Y.0000000057
  98. Lozoff B, Jimenez E, Wolf AW (1991) Long-term developmental outcome of infants with iron deficiency. N Engl J Med 325(10):687–694. https://doi.org/10.1056/NEJM199109053251004
  99. Lozoff B, Jimenez E, Hagen J, Mollen E, Wolf AW (2000) Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics 105(4):e51–e51. https://doi.org/10.1542/peds.105.4.e51
  100. Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T (2006) Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev 64(5 Pt 2):S34–S43; discussion S72–S91. https://doi.org/10.1301/nr.2006.may.s34-s43
  101. Lozoff B, Clark KM, Jing Y, Armony-Sivan R, Angelilli ML, Jacobson SW (2008) Dose-response relationships between iron deficiency with or without anemia and infant social-emotional behavior. J Pediatr 152(5):696–702, 702.31–33. https://doi.org/10.1016/j.jpeds.2007.09.048
  102. Lozoff B, Castillo M, Clark KM, Smith JB (2012) Follow-up of a randomized controlled trial of iron-fortified (12.7 mg/L) vs. low-iron (2.3 mg/L) infant formula: developmental outcome at 10 years. Arch Pediatr Adolesc Med 166(3):208–215. https://doi.org/10.1001/archpediatrics.2011.197
  103. Lucia FS, Pacheco-Torres J, González-Granero S et al (2018) Transient hypothyroidism during lactation arrests myelination in the anterior commissure of rats. A magnetic resonance image and electron microscope study. Front Neuroanat 12:31. https://doi.org/10.3389/fnana.2018.00031
  104. Mackenzie GG, Zago MP, Aimo L, Oteiza PI (2007) Zinc deficiency in neuronal biology. IUBMB Life 59(4–5):299–307. https://doi.org/10.1080/15216540701225966
  105. Maliszewski AM, Gadhia MM, O’Meara MC, Thorn SR, Rozance PJ, Brown LD (2012) Prolonged infusion of amino acids increases leucine oxidation in fetal sheep. Am J Physiol Endocrinol Metab 302(12):E1483–E1492. https://doi.org/10.1152/ajpendo.00026.2012
  106. Mallard EC, Rehn A, Rees S, Tolcos M, Copolov D (1999) Ventriculomegaly and reduced hippocampal volume following intrauterine growth-restriction: implications for the aetiology of schizophrenia. Schizophr Res 40(1):11–21. https://doi.org/10.1016/s0920-9964(99)00041-9
  107. Martínez-Galiano JM, Amezcua-Prieto C, Cano-Ibañez N, Salcedo-Bellido I, Bueno-Cavanillas A, Delgado-Rodriguez M (2019) Maternal iron intake during pregnancy and the risk of small for gestational age. Matern Child Nutr 15(3):e12814. https://doi.org/10.1111/mcn.12814
  108. McCarthy EK, Murray DM, Malvisi L et al (2018) Antenatal vitamin D status is not associated with standard neurodevelopmental assessments at age 5 years in a well-characterized prospective maternal-infant cohort. J Nutr 148(10):1580–1586. https://doi.org/10.1093/jn/nxy150
  109. Meck WH, Williams CL, Cermak JM, Blusztajn JK (2007) Developmental periods of choline sensitivity provide an ontogenetic mechanism for regulating memory capacity and age-related dementia. Front Integr Neurosci 1:7. https://doi.org/10.3389/neuro.07.007.2007
  110. Melough MM, Murphy LE, Graff JC et al (2021) Maternal plasma 25-hydroxyvitamin D during gestation is positively associated with neurocognitive development in offspring at age 4-6 years. J Nutr 151(1):132–139. https://doi.org/10.1093/jn/nxaa309
  111. Merialdi M, Caulfield LE, Zavaleta N, Figueroa A, DiPietro JA (1999) Adding zinc to prenatal iron and folate tablets improves fetal neurobehavioral development. Am J Obstet Gynecol 180(2 Pt 1):483–490. https://doi.org/10.1016/s0002-9378(99)70236-x
  112. Merialdi M, Caulfield LE, Zavaleta N, Figueroa A, Dominici F, Dipietro JA (2004) Randomized controlled trial of prenatal zinc supplementation and the development of fetal heart rate. Am J Obstet Gynecol 190(4):1106–1112. https://doi.org/10.1016/j.ajog.2003.09.072
  113. Miller MF, Stoltzfus RJ, Mbuya NV et al (2003) Total body iron in HIV-positive and HIV-negative Zimbabwean newborns strongly predicts anemia throughout infancy and is predicted by maternal hemoglobin concentration. J Nutr 133(11):3461–3468. https://doi.org/10.1093/jn/133.11.3461
  114. Miller SL, Huppi PS, Mallard C (2016) The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol 594(4):807–823. https://doi.org/10.1113/JP271402
  115. Moon J, Chen M, Gandhy SU et al (2010) Perinatal choline supplementation improves cognitive functioning and emotion regulation in the Ts65Dn mouse model of down syndrome. Behav Neurosci 124(3):346–361. https://doi.org/10.1037/a0019590
  116. Moon K, Rao SC, Schulzke SM, Patole SK, Simmer K (2016) Longchain polyunsaturated fatty acid supplementation in preterm infants. Cochrane Database Syst Rev 2016(12). https://doi.org/10.1002/14651858.CD000375.pub5
  117. Morris SS, Cogill B, Uauy R, Maternal and Child Undernutrition Study Group (2008) Effective international action against undernutrition: why has it proven so difficult and what can be done to accelerate progress? Lancet Lond Engl 371(9612):608–621. https://doi.org/10.1016/S0140-6736(07)61695-X
  118. Murray E, Fernandes M, Fazel M, Kennedy SH, Villar J, Stein A (2015) Differential effect of intrauterine growth restriction on childhood neurodevelopment: a systematic review. BJOG Int J Obstet Gynaecol 122(8):1062–1072. https://doi.org/10.1111/1471-0528.13435
  119. Murray-Kolb LE, Khatry SK, Katz J et al (2012) Preschool micronutrient supplementation effects on intellectual and motor function in school-aged Nepalese children. Arch Pediatr Adolesc Med 166(5):404–410. https://doi.org/10.1001/archpediatrics.2012.37
  120. Mutua AM, Nampijja M, Elliott AM et al (2020) vitamin D status is not associated with cognitive or motor function in pre-school Ugandan children. Nutrients 12(6). https://doi.org/10.3390/nu12061662
  121. Nahar B, Hossain M, Mahfuz M et al (2020) Early childhood development and stunting: findings from the MAL-ED birth cohort study in Bangladesh. Matern Child Nutr 16(1):e12864. https://doi.org/10.1111/mcn.12864
  122. Naik AA, Patro IK, Patro N (2015) Slow physical growth, delayed reflex ontogeny, and permanent behavioral as well as cognitive impairments in rats following intra-generational protein malnutrition. Front Neurosci 9:446. https://doi.org/10.3389/fnins.2015.00446
  123. Neuringer M, Connor WE, Van Petten C, Barstad L (1984) Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J Clin Invest 73(1):272–276. https://doi.org/10.1172/JCI111202
  124. Neuringer M, Connor WE, Lin DS, Barstad L, Luck S (1986) Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc Natl Acad Sci U S A 83(11):4021–4025. https://doi.org/10.1073/pnas.83.11.4021
  125. Nishigori H, Mazzuca DM, Nygard KL, Han VK, Richardson BS (2008) BDNF and TrkB in the preterm and near-term ovine fetal brain and the effect of intermittent umbilical cord occlusion. Reprod Sci Thousand Oaks Calif 15(9):895–905. https://doi.org/10.1177/1933719108324135
  126. Nissensohn M, Sanchez-Villegas A, Lugo D et al (2013) Effect of zinc intake on mental and motor development in infants: a meta-analysis. Int J Vitam Nutr Res 83:203–215. https://doi.org/10.1024/0300-9831/a000161
  127. O’Brien KO, Zavaleta N, Abrams SA, Caulfield LE (2003) Maternal iron status influences iron transfer to the fetus during the third trimester of pregnancy. Am J Clin Nutr 77(4):924–930. https://doi.org/10.1093/ajcn/77.4.924
  128. O’Donnell KJ, Rakeman MA, Zhi-Hong D et al (2002) Effects of iodine supplementation during pregnancy on child growth and development at school age. Dev Med Child Neurol 44(2):76–81. https://doi.org/10.1017/s0012162201001712
  129. Oliveri AN, Knuth M, Glazer L, Bailey J, Kullman SW, Levin ED (2020) Zebrafish show long-term behavioral impairments resulting from developmental vitamin D deficiency. Physiol Behav 224:113016. https://doi.org/10.1016/j.physbeh.2020.113016
  130. Patrick RP, Ames BN (2014) vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J 28(6):2398–2413. https://doi.org/10.1096/fj.13-246546
  131. Pérez-López FR, Pasupuleti V, Mezones-Holguin E et al (2015) Effect of vitamin D supplementation during pregnancy on maternal and neonatal outcomes: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril 103(5):1278–1288.e4. https://doi.org/10.1016/j.fertnstert.2015.02.019
  132. Perkins JM, Kim R, Krishna A, McGovern M, Aguayo VM, Subramanian SV (2017) Understanding the association between stunting and child development in low- and middle-income countries: next steps for research and intervention. Soc Sci Med 1982 193:101–109. https://doi.org/10.1016/j.socscimed.2017.09.039
  133. Pharoah PO, Buttfield IH, Hetzel BS (1971) Neurological damage to the fetus resulting from severe iodine deficiency during pregnancy. Lancet Lond Engl 1(7694):308–310. https://doi.org/10.1016/s0140-6736(71)91040-3
  134. Pharoah P, Buttfield IH, Hetzel BS (2012) Neurological damage to the fetus resulting from severe iodine deficiency during pregnancy. Int J Epidemiol 41(3):589–592. https://doi.org/10.1093/ije/dys070
  135. Pollitt E, Gorman KS, Engle PL, Rivera JA, Martorell R (1995) Nutrition in early life and the fulfillment of intellectual potential. J Nutr 125(4 Suppl):1111S–1118S. https://doi.org/10.1093/jn/125.suppl_4.1111S
  136. Pongcharoen T, Ramakrishnan U, DiGirolamo AM et al (2012) Influence of prenatal and postnatal growth on intellectual functioning in school-aged children. Arch Pediatr Adolesc Med 166(5):411–416. https://doi.org/10.1001/archpediatrics.2011.1413
  137. Rao R, Tkac I, Townsend EL, Gruetter R, Georgieff MK (2003) Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. J Nutr 133(10):3215–3221. https://doi.org/10.1093/jn/133.10.3215
  138. Redman K, Ruffman T, Fitzgerald P, Skeaff S (2016) Iodine deficiency and the brain: effects and mechanisms. Crit Rev Food Sci Nutr 56(16):2695–2713. https://doi.org/10.1080/10408398.2014.922042
  139. Rehn AE, Van Den Buuse M, Copolov D, Briscoe T, Lambert G, Rees S (2004) An animal model of chronic placental insufficiency: relevance to neurodevelopmental disorders including schizophrenia. Neuroscience 129(2):381–391. https://doi.org/10.1016/j.neuroscience.2004.07.047
  140. Reisbick S, Neuringer M, Gohl E, Wald R, Anderson GJ (1997) Visual attention in infant monkeys: effects of dietary fatty acids and age. Dev Psychol 33(3):387–395. https://doi.org/10.1037//0012-1649.33.3.387
  141. Ross RG, Hunter SK, McCarthy L et al (2013) Perinatal choline effects on neonatal pathophysiology related to later schizophrenia risk. Am J Psychiatry 170(3):290–298. https://doi.org/10.1176/appi.ajp.2012.12070940
  142. Ross RG, Hunter SK, Hoffman MC et al (2016) Perinatal phosphatidylcholine supplementation and early childhood behavior problems: evidence for CHRNA7 moderation. Am J Psychiatry 173(5):509–516. https://doi.org/10.1176/appi.ajp.2015.15091188
  143. Rozance PJ, Crispo MM, Barry JS et al (2009) Prolonged maternal amino acid infusion in late-gestation pregnant sheep increases fetal amino acid oxidation. Am J Physiol Endocrinol Metab 297(3):E638–E646. https://doi.org/10.1152/ajpendo.00192.2009
  144. Ruff CA, Faulkner SD, Rumajogee P et al (2017) The extent of intrauterine growth restriction determines the severity of cerebral injury and neurobehavioural deficits in rodents. PLoS One 12(9):e0184653. https://doi.org/10.1371/journal.pone.0184653
  145. Ryan SH, Williams JK, Thomas JD (2008) Choline supplementation attenuates learning deficits associated with neonatal alcohol exposure in the rat: effects of varying the timing of choline administration. Brain Res 1237:91–100. https://doi.org/10.1016/j.brainres.2008.08.048
  146. Salas AA, Woodfin T, Phillips V, Peralta-Carcelen M, Carlo WA, Ambalavanan N (2018) Dose-response effects of early vitamin D supplementation on neurodevelopmental and respiratory outcomes of extremely preterm infants at 2 years of age: a randomized trial. Neonatology 113(3):256–262. https://doi.org/10.1159/000484399
  147. Santos DC, Angulo-Barroso RM, Li M et al (2018) Timing, duration, and severity of iron deficiency in early development and motor outcomes at 9 months. Eur J Clin Nutr 72(3):332–341. https://doi.org/10.1038/s41430-017-0015-8
  148. Sass L, Vinding RK, Stokholm J et al (2020) High-dose vitamin D supplementation in pregnancy and neurodevelopment in childhood: a prespecified secondary analysis of a randomized clinical trial. JAMA Netw Open 3(12):e2026018. https://doi.org/10.1001/jamanetworkopen.2020.26018
  149. Schmidt RJ, Tancredi DJ, Krakowiak P, Hansen RL, Ozonoff S (2014) Maternal intake of supplemental iron and risk of autism spectrum disorder. Am J Epidemiol 180(9):890–900. https://doi.org/10.1093/aje/kwu208
  150. Scholl TO (2011) Maternal iron status: relation to fetal growth, length of gestation, and iron endowment of the neonate. Nutr Rev 69(s1):S23–S29. https://doi.org/10.1111/j.1753-4887.2011.00429.x
  151. Scholtz SA, Colombo J, Carlson SE (2013) Clinical overview of effects of dietary long-chain polyunsaturated fatty acids during the perinatal period. Nestle Nutr Inst Workshop Ser 77:145–154. https://doi.org/10.1159/000351397
  152. Shao J, Lou J, Rao R et al (2012) Maternal serum ferritin concentration is positively associated with newborn iron stores in women with low ferritin status in late pregnancy. J Nutr 142(11):2004–2009. https://doi.org/10.3945/jn.112.162362
  153. Shaw GM, Finnell RH, Blom HJ et al (2009) Choline and risk of neural tube defects in a folate-fortified population. Epidemiology 20(5):714–719. https://doi.org/10.1097/EDE.0b013e3181ac9fe7
  154. Signore C, Ueland PM, Troendle J, Mills JL (2008) Choline concentrations in human maternal and cord blood and intelligence at 5 y of age. Am J Clin Nutr 87(4):896–902. https://doi.org/10.1093/ajcn/87.4.896
  155. Skeaff SA (2011) Iodine deficiency in pregnancy: the effect on neurodevelopment in the child. Nutrients 3(2):265–273. https://doi.org/10.3390/nu3020265
  156. Specht IO, Janbek J, Thorsteinsdottir F, Frederiksen P, Heitmann BL (2020) Neonatal vitamin D levels and cognitive ability in young adulthood. Eur J Nutr 59(5):1919–1928. https://doi.org/10.1007/s00394-019-02042-0
  157. Spinillo A, Stronati M, Ometto A, Fazzi E, Lanzi G, Guaschino S (1993) Infant neurodevelopmental outcome in pregnancies complicated by gestational hypertension and intra-uterine growth retardation. J Perinat Med 21(3):195–203. https://doi.org/10.1515/jpme.1993.21.3.195
  158. Strain JJ, McSorley EM, van Wijngaarden E et al (2013) Choline status and neurodevelopmental outcomes at 5 years of age in the Seychelles Child Development Nutrition Study. Br J Nutr 110(2):330–336. https://doi.org/10.1017/S0007114512005077
  159. Tamura T, Goldenberg RL, Ramey SL, Nelson KG, Chapman VR (2003) Effect of zinc supplementation of pregnant women on the mental and psychomotor development of their children at 5 y of age. Am J Clin Nutr 77(6):1512–1516. https://doi.org/10.1093/ajcn/77.6.1512
  160. Thompson RA, Nelson CA (2001) Developmental science and the media. Early brain development. Am Psychol 56(1):5–15. https://doi.org/10.1037/0003-066x.56.1.5
  161. Tran PV, Kennedy BC, Lien Y-C, Simmons RA, Georgieff MK (2015) Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus. Am J Physiol Regul Integr Comp Physiol 308(4):R276–R282. https://doi.org/10.1152/ajpregu.00429.2014
  162. Tran PV, Kennedy BC, Pisansky MT et al (2016) Prenatal choline supplementation diminishes early-life Iron deficiency-induced reprogramming of molecular networks associated with behavioral abnormalities in the adult rat hippocampus. J Nutr 146(3):484–493. https://doi.org/10.3945/jn.115.227561
  163. Tyagi E, Zhuang Y, Agrawal R, Ying Z, Gomez-Pinilla F (2015) Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet. Neurobiol Dis 73:307–318. https://doi.org/10.1016/j.nbd.2014.09.014
  164. Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE (2001) Essential fatty acids in visual and brain development. Lipids 36(9):885–895. https://doi.org/10.1007/s11745-001-0798-1
  165. Unger EL, Hurst AR, Georgieff MK et al (2012) Behavior and monoamine deficits in prenatal and perinatal iron deficiency are not corrected by early postnatal moderate-Iron or high-Iron diets in rats. J Nutr 142(11):2040–2049. https://doi.org/10.3945/jn.112.162198
  166. UNICEF (2019) Iodine. UNICEF DATA. https://data.unicef.org/topic/nutrition/iodine/ . Accessed 29 Jan 2021
  167. Utsunomiya H, Takano K, Okazaki M, Mitsudome A (1999) Development of the temporal lobe in infants and children: analysis by MR-based volumetry. AJNR Am J Neuroradiol 20(4):717–723
  168. Velasco I, Carreira M, Santiago P et al (2009) Effect of iodine prophylaxis during pregnancy on neurocognitive development of children during the first two years of life. J Clin Endocrinol Metab 94(9):3234–3241. https://doi.org/10.1210/jc.2008-2652
  169. Verfuerden ML, Dib S, Jerrim J, Fewtrell M, Gilbert RE (2020) Effect of long-chain polyunsaturated fatty acids in infant formula on long-term cognitive function in childhood: a systematic review and meta-analysis of randomised controlled trials. PLoS One 15(11):e0241800. https://doi.org/10.1371/journal.pone.0241800
  170. Verhagen NJE, Gowachirapant S, Winichagoon P, Andersson M, Melse-Boonstra A, Zimmermann MB (2020) Iodine supplementation in mildly iodine-deficient pregnant women does not improve maternal thyroid function or child development: a secondary analysis of a randomized controlled trial. Front Endocrinol 11. https://doi.org/10.3389/fendo.2020.572984
  171. Villamor E, Rifas-Shiman SL, Gillman MW, Oken E (2012) Maternal intake of methyl-donor nutrients and child cognition at 3 years of age. Paediatr Perinat Epidemiol 26(4):328–335. https://doi.org/10.1111/j.1365-3016.2012.01264.x
  172. Voltas N, Canals J, Hernández-Martínez C, Serrat N, Basora J, Arija V (2020) Effect of vitamin D status during pregnancy on infant neurodevelopment: the ECLIPSES study. Nutrients 12(10):3196. https://doi.org/10.3390/nu12103196
  173. Vuillermot S, Luan W, Meyer U, Eyles D (2017) vitamin D treatment during pregnancy prevents autism-related phenotypes in a mouse model of maternal immune activation. Mol Autism 8:9. https://doi.org/10.1186/s13229-017-0125-0
  174. Vyas Y, Lee K, Jung Y, Montgomery JM (2020) Influence of maternal zinc supplementation on the development of autism-associated behavioural and synaptic deficits in offspring Shank3-knockout mice. Mol Brain 13(1):110. https://doi.org/10.1186/s13041-020-00650-0
  175. Wachs TD, Georgieff M, Cusick S, McEwen B (2014) Issues in the timing of integrated early interventions: contributions from nutrition, neuroscience and psychological research. Ann N Y Acad Sci 1308:89–106. https://doi.org/10.1111/nyas.12314
  176. Walker SP, Wachs TD, Meeks Gardner J et al (2007) Child development: risk factors for adverse outcomes in developing countries. Lancet 369(9556):145–157. https://doi.org/10.1016/S0140-6736(07)60076-2
  177. Wang Y, Fu W, Liu J (2016) Neurodevelopment in children with intrauterine growth restriction: adverse effects and interventions. J Matern-Fetal Neonatal Med 29(4):660–668. https://doi.org/10.3109/14767058.2015.1015417
  178. Ward BC, Kolodny NH, Nag N, Berger-Sweeney JE (2009) Neurochemical changes in a mouse model of Rett syndrome: changes over time and in response to perinatal choline nutritional supplementation. J Neurochem 108(2):361–371. https://doi.org/10.1111/j.1471-4159.2008.05768.x
  179. Warthon-Medina M, Moran VH, Stammers A-L et al (2015) Zinc intake, status and indices of cognitive function in adults and children: a systematic review and meta-analysis. Eur J Clin Nutr 69(6):649–661. https://doi.org/10.1038/ejcn.2015.60
  180. Whitehouse AJO, Holt BJ, Serralha M, Holt PG, Kusel MMH, Hart PH (2012) Maternal serum vitamin D levels during pregnancy and offspring neurocognitive development. Pediatrics 129(3):485–493. https://doi.org/10.1542/peds.2011-2644
  181. WHO (2021) Anaemia. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/preva... . Accessed 28 Jan 2021
  182. WHO (2012) Daily iron and folic acid supplementation during pregnancy. http://www.who.int/elena/titles/guidance_summaries/daily_iron_pregnancy/en/ . Accessed 28 Jan 2021
  183. Wicklow B, Gallo S, Majnemer A et al (2016) Impact of vitamin D supplementation on gross motor development of healthy term infants: a randomized dose-response trial. Phys Occup Ther Pediatr 36(3):330–342. https://doi.org/10.3109/01942638.2015.1050150
  184. Windham GC, Pearl M, Anderson MC et al (2019) Newborn vitamin D levels in relation to autism spectrum disorders and intellectual disability: a case–control study in California. Autism Res 12(6):989–998. https://doi.org/10.1002/aur.2092
  185. Wozniak JR, Fuglestad AJ, Eckerle JK et al (2013) Choline supplementation in children with fetal alcohol spectrum disorders has high feasibility and tolerability. Nutr Res N Y N 33(11):897–904. https://doi.org/10.1016/j.nutres.2013.08.005
  186. Wozniak JR, Fuglestad AJ, Eckerle JK et al (2015) Choline supplementation in children with fetal alcohol spectrum disorders: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr 102(5):1113–1125. https://doi.org/10.3945/ajcn.114.099168
  187. Wozniak JR, Fink BA, Fuglestad AJ et al (2020) Four-year follow-up of a randomized controlled trial of choline for neurodevelopment in fetal alcohol spectrum disorder. J Neurodev Disord 12(1):9. https://doi.org/10.1186/s11689-020-09312-7
  188. Wu BTF, Dyer RA, King DJ, Richardson KJ, Innis SM (2012) Early second trimester maternal plasma choline and betaine are related to measures of early cognitive development in term infants. PLoS One 7(8):e43448. https://doi.org/10.1371/journal.pone.0043448
  189. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484. https://doi.org/10.1016/j.cell.2006.01.016
  190. Yu X, Ren T, Yu X (2013) Disruption of calmodulin-dependent protein kinase II α/brain-derived neurotrophic factor (α-CaMKII/BDNF) signalling is associated with zinc deficiency-induced impairments in cognitive and synaptic plasticity. Br J Nutr 110(12):2194–2200. https://doi.org/10.1017/S0007114513001657
  191. Zeisel SH (2006) Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr 26:229–250. https://doi.org/10.1146/annurev.nutr.26.061505.111156
  192. Zeisel SH (2012) A brief history of choline. Ann Nutr Metab 61(3):254–258. https://doi.org/10.1159/000343120
  193. Zeisel S (2017) Choline, other methyl-donors and epigenetics. Nutrients 9(5). https://doi.org/10.3390/nu9050445
  194. Zhou SJ, Skeaff SA, Ryan P et al (2015) The effect of iodine supplementation in pregnancy on early childhood neurodevelopment and clinical outcomes: results of an aborted randomised placebo-controlled trial. Trials 16:563. https://doi.org/10.1186/s13063-015-1080-8
  195. Zimmermann MB (2020) Iodine supplements for mildly iodine-deficient pregnant women: are they worthwhile? Am J Clin Nutr 112(2):247–248. https://doi.org/10.1093/ajcn/nqaa116


Created by admin. Last Modification: Monday October 11, 2021 16:19:28 GMT-0000 by admin. (Version 4)