Vitamin D receptor (VDR) gene polymorphism and vascular dementia due to cerebral small vessel disease in an Asian Indian cohort
Journal of the Neurological Sciences https://doi.org/10.1016/j.jns.2018.05.025
Manjunath Supriyaa Sadanandavalli Retnaswami Chandrab Puttachandra Prabhakara Chandrajit Prasadc Rita Christophera
From Cerebral Small Vessel Disease: What to Know & What to Do 2018?
It appears that cerebral small vessel disease can increase
- White portions of MRI (poor blood flow) aka White matter hyperintensities
- Note: Multiple Sclerosis shows up as increased white matter on MRIs
- Cognitive decline
- Problems with walking or balance
- Strokes
- Vascular dementia.
Note: Poor Vitamin D Receptors result in less Vitamin D getting to cells,
but DOES NOT reduce the Vitamin D levels in the blood
Items in both categories Cognition and Vitamin D Receptor are listed here:
- Alzheimer's 9X more likely in women with a poor Vitamin D receptor – Sept 2022
- Alzheimer's disease 1.8 X higher risk if poor Vitamin D Receptor (if not take action) - May 2022
- 2X higher risk of Alzheimer’s if poor Vitamin D Receptor – Meta-analysis June 2021
- Lower vitamin D in blood causes Alzheimer's Disease (Mendelian gene analysis) – Dec 2019
- Cognitive decline not helped by daily vitamin D getting to just 30 ng – RCT July 2019
- Alzheimer’s is associated with all 7 of the genes which restrict vitamin D from getting to tissues – Sept 2018
- Resveratrol for Alzheimer's disease – Sept 2017
- Alzheimer’s (1.2X) and Parkenson’s (1.3X) more likely if poor Vitamin D Receptor – meta-analysis March 2019
- Treating herpes reduced incidence of senile dementia by 10 X (HSV1 reduces VDR by 8X) – 2018
- Body may change gene activation if more Vitamin D is needed (Schizophrenia in this case) – Oct 2018
- Alzheimer’s associated with Vitamin D and Vitamin D receptor – video and pdf – Aug 2018
- Cerebral small vessel disease 2.5 X more likely if poor Vitamin D Receptor – Sept 2018
- Alzheimer’s Disease is associated with genes which restrict vitamin D – Aug 2015
- Parkinson's and Alzheimer's: associations with vitamin D receptor genes and race – meta-analysis July 2014
- Alzheimer’s patients 3X more likely to have a malfunctioning vitamin D receptor gene – 2012
- Alzheimer’s patients are genetically 70 percent more likely to be vitamin D in-efficient – Feb 2012
Items in both categories Stroke and Vitamin D Receptor are listed here:
- Resveratrol improves health (Vitamin D receptor, etc.)
- Cerebral small vessel disease 2.5 X more likely if poor Vitamin D Receptor – Sept 2018
- Ischemic Stroke 3X more likely if Vitamin D Receptor gene change (Fok 1) – Jan 2014
- Ischemic stroke 2X more likely if Vitamin D Receptor gene problem – Dec 2014
Items in both categories Parkinson's and Vitamin D Receptor are listed here:
- Parkinson’s Disease and Vitamin D – review of 52 studies – May 2022
- Parkinson’s Disease, low vitamin D and Vit. D genetics – Jan 2023
- Parkinson’s Disease 3 X more likely if a poor Vitamin D Receptor – May – 2022
- Parkinson’s Disease might be fought by Vitamin D and the activation of the Vitamin D Receptor – March 2022
- Parkinson’s disease 1.6X more likely if a poor Vitamin D Receptor – meta-analysis Jan 2020
- Parkinson’s disease 20 percent more likely in Asians if poor Vitamin D Receptor – meta-analysis April 2019
- Parkinson's disease cognitive decline associated with poor Vitamin D receptor – Nov 2016
- Parkinson’s risk increased 2 to 7 times depending on Vitamin D Receptor – Sept 2016
- Parkinson's Disease associations with Vitamin D Receptor and GC gene – June 2016
- 2X more Parkinson's disease if modified vitamin D receptor genes – meta-analysis Aug 2014
- Parkinson's and Alzheimer's: associations with vitamin D receptor genes and race – meta-analysis July 2014
Vitamin D Receptor category has the following
Vitamin D tests cannot detect Vitamin D Receptor (VDR) problems
A poor VDR restricts Vitamin D from getting in the cells
It appears that 30% of the population have a poor VDR (40% of the Obese )
Several diseases protect themselves by deactivating the Vitamin D receptor. Example: Breast Cancer
- - - - - - - -
The Vitamin D Receptor is associated with many health problems
Some health problems, such as Breast Cancer, Diabetes, and COVID protect themselves by reducing VDR activation
55 health problems associated with poor VDR
A poor VDR is associated with the risk of 55 health problems click here for details
The risk of 48 diseases at least double with poor VDR as of Jan 2023 click here for details
Some health problem, such as Breast Cancer reduce the VDR
VDR at-home test $29 - results not easily understood in 2016
There are hints that you may have inherited a poor VDR
How to increase VDR activation
Compensate for poor VDR by increasing one or more:
Increasing | Increases |
1) Vitamin D supplement Sun Ultraviolet -B | Vitamin D in the blood and thus in the cells |
2) Magnesium | Vitamin D in the blood AND in the cells |
3) Omega-3 | Vitamin D in the cells |
4) Resveratrol | Vitamin D Receptor |
5) Intense exercise | Vitamin D Receptor |
6) Get prescription for VDR activator paricalcitol, maxacalcitol? | Vitamin D Receptor |
7) Quercetin (flavonoid) | Vitamin D Receptor |
8) Zinc is in the VDR | Vitamin D Receptor |
9) Boron | Vitamin D Receptor ?, etc |
10) Essential oils e.g. ginger, curcumin | Vitamin D Receptor |
11) Progesterone | Vitamin D Receptor |
12) Infrequent high concentration Vitamin D Increases the concentration gradient | Vitamin D Receptor |
13) Sulfroaphane and perhaps sulfur | Vitamin D Receptor |
14) Butyrate especially gut | Vitamin D Receptor |
15) Berberine | Vitamin D Receptor |
Note: If you are not feeling enough benefit from Vitamin D, you might try increasing VDR activation. You might feel the benefit within days of adding one or more of the above
Far healthier and stronger at age 72 due to supplements Includes 6 supplements that help the VDR
Highlights
- Vitamin D acting through VDR plays a crucial role in vascular health.
- VDR FokI “f” allele increases risk of cerebral SVD by 1.5-fold in men.
- Serum vitamin D is significantly lower in subjects with FokI “ff” genotype.
- FokI “ff” increases risk of SVD by 2.5-fold in subjects with low serum vitamin D
- ApaI polymorphism confers protection against SVD in women.
Vitamin D receptor (VDR) and its ligand Vitamin D, play a crucial role in regulating multiple pathways for maintaining vascular health. The present study aimed at evaluating whether single nucleotide polymorphisms in VDR gene were associated with susceptibility to vascular dementia (VaD) due to cerebral small vessel disease (SVD). A total of 644 subjects (302 patients diagnosed with cerebral SVD-associated VaD and 342, age- and gender-matched healthy controls) were genotyped for VDR gene variants, FokI, ApaI, TaqI and BsmI, by PCR-RFLP method. Among the 4 examined VDR variants, the presence of the minor allele (Ff+ff vs FF) of FokI variant increased the risk for cerebral SVD by 1.5-fold in men (p = 0.047). Serum 25-hydroxyvitamin D [25(OH)D] was lower in subjects having the FokI “ff” genotype compared to those with the “FF” genotype (p = 0.044). Moreover, in subjects with low serum 25(OH)D the presence of “ff” genotype increased the odds of SVD by 2.5 folds (p = 0.041). ApaI polymorphism decreased the risk of cerebral SVD in women. The distribution of TaqI and BsmI variants were not significantly different between patients and controls. Further studies in large cohorts are necessary to validate the role of FokI polymorphism in cerebral SVD and VaD etiopathogenesis.
3538 visitors, last modified 23 Jun, 2018, |