Table of contents
- COVID death 12X more likely if poor VDR - Oct 2021
- COVID death 11.8X more likely if poor VDR - Review Nov 2022
- Many viruses and some diseases can down-regulate the Vitamin D Receptor
- VitaminDWiki - in both categories Virus and Vitamin D Receptor (
37 studies) - VitaminDWiki - The Vitamin D Receptor is associated with many health problems
- 55 health problems associated with poor VDR
- How to increase VDR activation
- There have been
6336 visits to this page
COVID death 12X more likely if poor VDR - Oct 2021
Association of Vitamin D receptor gene polymorphisms and clinical/severe outcomes of COVID-19 patients
Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases - October 2021
Rasoul AbdollahzadehMohammad Hossein ShushizadehMina Barazandehrokh...Razieh Zarifian YeganehIntroduction Growing evidence documented the critical impacts of vitamin D (VD) in the prognosis of COVID-19 patients. The functions of VD are dependent on the vitamin D receptor (VDR) in the VD/VDR signaling pathway. Therefore, we aimed to assess the association of VDR gene polymorphisms with COVID-19 outcomes. Methods In the present study, eight VDR single nucleotide polymorphisms (SNPs) were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 500 COVID-19 patients in Iran, including 160 asymptomatic, 250 mild/moderate, and 90 severe/critical cases. The association of these polymorphisms with severity, clinical outcomes, and comorbidities were evaluated through the calculation of the Odds ratio (OR). Results Interestingly, significant associations were disclosed for some of the SNP-related alleles and/or genotypes in one or more genetic models with different clinical data in COVID-19 patients. Significant association of VDR-SNPs with signs, symptoms, and comorbidities was as follows: ApaI with shortness of breath (P ˂ 0.001) and asthma (P = 0.034) in severe/critical patients (group III); BsmI with chronic renal disease (P = 0.010) in mild/moderate patients (group II); Tru9I with vomiting (P = 0.031), shortness of breath (P = 0.04), and hypertension (P = 0.030); FokI with fever and hypertension (P = 0.027) in severe/critical patients (group III); CDX2 with shortness of breath (P = 0.022), hypertension (P = 0.036), and diabetes (P = 0.042) in severe/critical patients (group III); EcoRV with diabetes (P ˂ 0.001 and P = 0.045 in mild/moderate patients (group II) and severe/critical patients (group III), respectively). However, the association of VDR TaqI and BglI polymorphisms with clinical symptoms and comorbidities in COVID-19 patients was not significant. Conclusion VDR gene polymorphisms might play critical roles in the vulnerability to infection and severity of COVID-19, probably by altering the risk of comorbidities. However, these results require further validation in larger studies with different ethnicities and geographical regions.
Uni- and multivariate logistic regression analyses (clipped from PDF)
Univariate analysis showed that disease severity was associated with age (odds ration [OR]: 1.031, confidence interval CI: 1.015-1.047, p < .001, R2: 2.7%), lymphocyte count (OR: 0.998, CI: 0.997-0.998, p < .001, R2: 6.7%), ferritin (OR: 1.001, CI: 1.000-1.002, p < .001, R2: 7.9%), LDH (OR: 1.003, CI: 1.002-1.005, p < .001, R2: 8.5%), hs-CRP levels (OR: 1.016, CI: 1.012-1.019, p < .001, R2: 18.1%), procalcitonin (OR: 2.902, CI: 1.651-5.099, p <.001, R2: 8.7%), and also Fok I Ff genotype (OR: 3.172, CI: 1.182-8.511, p = .022, R2: 1.1%).
In univariate analysis, mortality was associated with the Apa I aa genotype (OR: 11.828, CI: 2.493-56.104, p = .002, R2: 14.6%). Moreover, ICU admission was associated with theTaqI TT genotype (OR: 2.854, CI: 0.851-10.755, p = .005, R2: 3.8%).
In multivariate logistic regression analysis, hs-CRP (OR: 1.016), ApaI aa genotype (OR: 14.581) were found to be related to mortality (R2: 37.1%).
 Download the PDF from VitaminDWiki
COVID death 11.8X more likely if poor VDR - Review Nov 2022
Vitamin D and polymorphisms of VDR and GC genes in the severity and mortality from COVID-19. A systematic review
Nutr Hosp. 2022 Nov 3.doi: 10.20960/nh.04299
[Article in Spanish] Giulia Camporesi 1 , Regina Hernández Payró 1 , Tania Levy Esses 1 , María José Peláez Samperio 1 , Adrián Macho González 2 , Francisco J Sánchez-Muniz 2Previous studies have pointed to a possible relationship between vitamin D deficiency and the severity of the disease promoted by SARS-CoV-2, reducing respiratory and cardiovascular complications caused by a hyperreaction of the immune system known as "cytokine storm". This vitamin exerts multiple functions that depend on the presence and levels of different proteins, such as the vitamin D receptor (VDR) and the vitamin D binding protein (DBP), and the existence of single nucleotide polymorphisms (SNPs) of the genes that encode these proteins. The objective of this review is to assess whether some VDR and GC SNPs are risk factors for the most severe forms of COVID-19 disease and whether they condition the response to vitamin D supplementation. A search was performed in PubMed, Google Scholar and Scielo, finding that genotypes in patients affected by COVID-19, were rarely performed, although some studies find a relationship between different alleles and the severity of the disease. The ApaI polymorphism of the VDR gene stands out, as the minor allele "a" increases the risk of mortality from COVID-19 (OR = 11.828, CI: 2,493-56,104, p = 0.002). Results divergency in the efficacy of vitamin D supplementation suggest the need for a larger number of studies. In conclusion, the study of VDR and GC polymorphisms seems essential to effectively treat vitamin D deficiency and particularly to protect against COVID-19. Well-designed studies are needed to elucidate whether plasma vitamin D levels play a role of casuality or causality.
 Download the Spanish PDF from VitaminDWiki
Many viruses and some diseases can down-regulate the Vitamin D Receptor
- A virus that most adults have (Cytomegalovirus) decreases the amount of Vitamin D which gets to the cells – Jan 2017
- Epstein-Barr is yet another virus that deactivates the Vitamin D receptor (COVID later suspected as well)– 2010
- COVID virus alters the activation of 100 vitamin D related genes in the lung – April 2021
- Breast Cancer reduces receptor and thus blocks Vitamin D to the cells – several studies
VitaminDWiki - in both categories Virus and Vitamin D Receptor (
37 studies) This list is automatically updated
- Vitamin D preventing and treating COVID - 30,000 publications – Oct 2024
- COVID maximum downregulation of Vitamin D receptor and CYP27B1 resulted in death - Feb 2024
- COVID in hospital stopped by Vitamin D Receptor activators (curcumin, quercetin) – RCT June 2023
- Children with COVID 4X more likely to have poor Vitamin D Receptors (Note: COVID deactivates VDR) – April 2023
- Diabetes 3X more likely if had COVID ICU (VDR was deactivated) - April 2023
- COVID variants protect themselves by deactivating different VDR variants– March 2023
- Dengue Fever decimated by Vitamin D - many studies
- COVID kids were more likely to have a poor VDR (4.3 X), than low Vitamin D (2.6 X) – Sept 2022
- Cancers are associated with low vitamin D, poor vaccination response and perhaps poor VDR – July 2022
- COVID 3X more likely if a poor Receptor (cells get less Vitamin D from the blood) – July 2022
- Long-COVID is now the biggest COVID concern - many studies
- COVID death 12X more likely if poor Vitamin D Receptor (less D gets to cells) - many studies
- COVID severity, ICU, and mortality all associated with poor vitamin D receptor (but not D, everyone had low D) -Dec 2021
- Different Vitamin D Receptor problems cause different COVID problems - Dec 2021
- COVID-19 severity associated with 3 vitamin D genes – Oct 2021
- Poor Vitamin D receptor blocked Vitamin D from fighting avian influenza viruses (in mice) – July 2021
- Epstein-Barr is yet another virus that deactivates the Vitamin D receptor (COVID later suspected as well)– 2010
- COVID-19 symptoms and comorbidities associated with the type of Vitamin D Receptor – Oct 2021
- Enveloped virus infection (RSV, coronavirus, HIV, etc.) 1.5X more likely if poor Vitamin D Receptor – meta-analysis Dec 2018
- COVID-19 outpatients getting Quercetin nanoemulsion had excellent outcomes (Q increased Vitamin D in cells) – RCT – June 2021
- A virus that most adults have (Cytomegalovirus) decreases the amount of Vitamin D which gets to the cells – Jan 2017
- COVID virus alters the activation of 100 vitamin D related genes in the lung – April 2021
- Common sense COVID-19 risk reduction - masks, social distancing, vitamin D - Oct 2020
- AI is examining 170,000 potential COVID-19 treatments, Vitamin D is one of only 6 found – Sept 4, 2020
- Vitamin D Receptor activation should reduce ARDS associated with COVID-19 - June 2020
- Dengue viral production decreased 1000X if activate Vitamin D Receptor (in lab) – July 2020
- Vitamin D, Quercetin, and Estradiol all increase vitamin D in cells and increase genes which reduce COVID-19 – May 21, 2020
- Quercetin and Vitamin D - Allies Against COVID-19
- Risk of enveloped virus infection is increased 50 percent if poor Vitamin D Receptor - meta-analysis Dec 2018
- Hand, foot, and Mouth disease is 14X more likely if poor Vitamin D Receptor – Oct 2019
- Treating herpes reduced incidence of senile dementia by 10 X (HSV1 reduces VDR by 8X) – 2018
- Severe hand, foot, and mouth virus is 2.9 X more likely if poor Vitamin D receptor – Oct 2018
- Hepatitis B virus reduced by 5X the Vitamin D getting to liver cells in the lab – Oct 2018
- Some enveloped virus are 1.2 X more likely if have a poor Vitamin D Receptor -Aug 2018
- Severe Pertussis is 1.5 times more likely if poor vitamin D receptor – Feb 2016
- Dengue Fever associated with poor vitamin D receptor – July 2002
- Dengue virus 2X to 4X more likely if vitamin D receptor gene problems
VitaminDWiki - The Vitamin D Receptor is associated with many health problems
530 studies in Vitamin D Receptor category Vitamin D tests cannot detect Vitamin D Receptor (VDR) problems
See also:
A poor VDR restricts Vitamin D from getting in the cells48 studies in the Resveratrol category It appears that 30% of the population have a poor VDR (40% of the Obese )
Health problems include: Autoimmune (
Several diseases protect themselves by deactivating the Vitamin D receptor. Example: Breast Cancer
- - - - - - - -
The Vitamin D Receptor is associated with many health problems19 studies), Breast Cancer ( 24 studies), Colon Cancer ( 13 studies), Cardiovascular ( 23 studies), Cognition ( 16 studies), Diabetes ( 24 studies), Hypertension ( 9 studies), Infant ( 22 studies), Lupus ( 6 studies), Metabolic Syndrome ( 4 studies), Mortality ( 4 studies), Multiple Sclerosis ( 14 studies), Obesity ( 17 studies), Pregnancy ( 24 studies), Rheumatoid Arthritis ( 10 studies), TB ( 8 studies), VIRUS ( 37 studies), Click here for details
Some health problems, such as Breast Cancer, Diabetes, and COVID protect themselves by reducing VDR activation
55 health problems associated with poor VDR
A poor VDR is associated with the risk of 55 health problems click here for details
The risk of 48 diseases at least double with poor VDR as of Jan 2023 click here for details
Some health problem, such as Breast Cancer reduce the VDRVDR at-home test $29 - results not easily understood in 2016
There are hints that you may have inherited a poor VDR
How to increase VDR activation
Compensate for poor VDR by increasing one or more:Increasing Increases 1) Vitamin D supplement Sun
Ultraviolet -BVitamin D in the blood
and thus in the cells2) Magnesium Vitamin D in the blood
AND in the cells3) Omega-3 Vitamin D in the cells 4) Resveratrol Vitamin D Receptor 5) Intense exercise Vitamin D Receptor 6) Get prescription for VDR activator
paricalcitol, maxacalcitol?Vitamin D Receptor 7) Quercetin (flavonoid) Vitamin D Receptor 8) Zinc is in the VDR Vitamin D Receptor 9) Boron Vitamin D Receptor ?,
etc10) Essential oils e.g. ginger, curcumin Vitamin D Receptor 11) Progesterone Vitamin D Receptor 12) Infrequent high concentration Vitamin D
Increases the concentration gradientVitamin D Receptor 13) Sulfroaphane and perhaps sulfur Vitamin D Receptor 14) Butyrate especially gut Vitamin D Receptor 15) Berberine Vitamin D Receptor Note: If you are not feeling enough benefit from Vitamin D, you might try increasing VDR activation. You might feel the benefit within days of adding one or more of the above
Far healthier and stronger at age 72 due to supplements Includes 6 supplements that help the VDR
There have been
6336 visits to this page
COVID death 12X more likely if poor Vitamin D Receptor (less D gets to cells) - many studies3076 visitors, last modified 24 Mar, 2024, This page is in the following categories (# of items in each category)Attached files
ID Name Uploaded Size Downloads 18764 COVID VDR Spanish.pdf admin 05 Nov, 2022 783.39 Kb 260 17235 VDR COVID Dec 2021.pdf admin 15 Mar, 2022 1.02 Mb 373