Toggle Health Problems and D

COVID 3X more likely if a poor Receptor (cells get less Vitamin D from the blood) – July 2022

VDR gene polymorphisms are associated with the increased susceptibility to COVID-19 among iranian population: A case-control study

Int J Immunogenet. 2022 Jul 21. doi: 10.1111/iji.12585   PDF costs $10 to rent
Ali Jafarpoor 1, Seyed Mohammad Jazayeri 1 2, Farah Bokharaei-Salim 3, Angila Ataei-Pirkooh 3, Azam Ghaziasadi 1 2, Saber Soltani 1, Ahmadreza Sadeghi 1 4, Shima Sadeghipoor Marvi 1, Vahdat Poortahmasebi 1 5, Seyed Mahmood Seyed Khorrami 6, Mandana Hasanzad 6 7, Negar Parsania 6, Sina Nagozir 6, Narges Mokhtari 6, Ali Parsania 6, Asma Bahrami 6, Mohammad Hossein Nadjarha 6, Reza Pakzad 8, Masoud Parsania 1 9

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the pathogenesis is unclear. Host genetic background is one of the main factors influencing the patients' susceptibility to several viral infectious diseases. This study aimed to investigate the association between host genetic polymorphisms of two genes, including vitamin D receptor (VDR) and vitamin D binding protein (DBP), and susceptibility to COVID-19 in a sample of the Iranian population. This case-control study enrolled 188 hospitalized COVID-19 patients as the case group and 218 suspected COVID-19 patients with mild signs as the control group. The VDR(rs7975232, rs731236 and rs2228570) and DBP (rs7041) gene single nucleotide polymorphisms (SNPs) were genotyped by Polymerase Chain Reaction Restriction - Fragment Length Polymorphism (PCR-RFLP) method. A significant association between rs2228570 SNP in the VDR gene and the susceptibility of COVID-19 was found between case and control groups.
The CT genotype (Heterozygous) of rs2228570 C > T polymorphism showed significant association with a 3.088 fold increased odds of COVID-19 (p < .0001; adjusted OR: 3.088; 95% CI: 1.902-5.012).
In addition, a significant association between CC genotype of rs2228570 CT polymorphism and increased odds of COVID-19 in male and female groups (p = .001; adjusted OR: 3.125; 95% CI: 1.630-5.991 and p = .002; adjusted OR: 3.071; 95% CI: 1.485-6.354 respectively) were determined.
Our results revealed no significant differences in the frequency of genotype and allele of VDR (rs7975232 and rs731236) and DBP (rs7041) between SARS-CoV-2-infected patients and controls (p > .05). Our results showed that polymorphism of VDR (rs2228570) probably could influence individual susceptibility to COVID-19. The polymorphisms of VDR (rs7975232 and rs731236) and DBP (rs7041) were not associated with SARS-CoV-2 infection susceptibility.


  1. AlSafar, H., Grant, W. B., Hijazi, R., Uddin, M., Alkaabi, N., Tay, G., & Al Anouti, F. (2021). COVID-19 disease severity and death in relation to vitamin D status among SARS-CoV-2-positive UAE residents. Nutrients, 13(5), 1714. Retrieved from https://doi.org/10.3390/nu13051714
  2. Alshahawey, M. (2021). A genetic insight into vitamin D binding protein and COVID-19. Medical Hypotheses, 149, 110531-110531. https://doi.org/10.1016/j.mehy.2021.110531
  3. Arai, H., Miyamoto, K.-I., Taketani, Y., Yamamoto, H., Iemori, Y., Morita, K., Tonai, T., Nishisho, T., Mori, S., & Takeda, E. (1997). A vitamin D receptor gene polymorphism in the translation initiation codon: Effect on protein activity and relation to bone mineral density in Japanese women. Journal of Bone and Mineral Research, 12(6), 915-921. https://doi.org/10.1359/jbmr.1997.12.6.915
  4. Bahrami, A., Parsania, M., Pourfathollah, A. A., Haghighat, S., & Sharifi, Z. (2020). Association of VDR (rs2228570, rs731236, rs7975232, rs1544410) and DBP (rs7041) genes polymorphisms with chronicity of hepatitis B in Iranian patients. Gene Reports, 19, 100615. https://doi.org/10.1016/j.genrep.2020.100615
  5. Blackwell, J. M., Jamieson, S. E., & Burgner, D. (2009). HLA and infectious diseases. Clinical Microbiology Reviews, 22(2), 370-385. Table of Contents. https://doi.org/10.1128/CMR.00048-08
  6. Bouillon, R., Schuit, F., Antonio, L., & Rastinejad, F. (2019). Vitamin D binding protein: A historic overview. Frontiers in Endocrinology (Lausanne), 10, 910. https://doi.org/10.3389/fendo.2019.00910
  7. Bui, L., Zhu, Z., Hawkins, S., Cortez-Resendiz, A., & Bellon, A. (2021). Vitamin D regulation of the immune system and its implications for COVID-19: A mini review. SAGE Open Medicine, 9, 205031212110140. https://doi.org/10.1177/20503121211014073
  8. Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 92(4), 418-423. https://doi.org/10.1002/jmv.25681
  9. Demir, M., Demir, F., & Aygun, H. (2021). Vitamin D deficiency is associated with COVID-19 positivity and severity of the disease. Journal of Medical Virology, 93(5), 2992-2999. https://doi.org/10.1002/jmv.26832
  10. Dendrou, C. A., Petersen, J., Rossjohn, J., & Fugger, L. (2018). HLA variation and disease. Nature Reviews Immunology, 18(5), 325-339. https://doi.org/10.1038/nri.2017.143
  11. Grant, W. B., Lahore, H., McDonnell, S. L., Baggerly, C. A., French, C. B., Aliano, J. L., & Bhattoa, H. P. (2020). Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 12(4), 988. https://doi.org/10.3390/nu12040988
  12. Greiller, C. L., & Martineau, A. R. (2015). Modulation of the immune response to respiratory viruses by vitamin D. Nutrients, 7(6), 4240-4270. https://doi.org/10.3390/nu7064240
  13. Hashemi, S. M. A., Thijssen, M., Hosseini, S. Y., Tabarraei, A., Pourkarim, M. R., & Sarvari, J. (2021). Human gene polymorphisms and their possible impact on the clinical outcome of SARS-CoV-2 infection. Archives of Virology, 166(8), 2089-2108. https://doi.org/10.1007/s00705-021-05070-6
  14. Heidari Nia, M., Rokni, M., Mirinejad, S., Kargar, M., Rahdar, S., Sargazi, S., & Saravani, R. (2022). Association of polymorphisms in tumor necrosis factors with SARS-CoV-2 infection and mortality rate: A case-control study and in silico analyses. Journal of Medical Virology, 94(4), 1502-1512. https://doi.org/10.1002/jmv.27477
  15. Heshmat, R., Mohammad, K., Majdzadeh, S. R., Forouzanfar, M. H., Bahrami, A., Omrani, G. H. R., Nabipour, I., Rajabian, R., Hossein-Nezhad, A., Rezaei Hemami, M., Keshtkar, A. A., & Pajouhi, M. (1970). Vitamin D deficiency in Iran: A multi-center study among different urban areas. Iranian Journal of Public Health, 37(Supple 2), Retrieved from https://ijph.tums.ac.ir/index.php/ijph/article/view/2901
  16. Hill, A. V. (2006). Aspects of genetic susceptibility to human infectious diseases. Annual Review of Genetics, 40, 469-486. https://doi.org/10.1146/annurev.genet.40.110405.090546
  17. Batur, L. K., & Hekim, N. (2021). The role of DBP gene polymorphisms in the prevalence of new coronavirus disease 2019 infection and mortality rate. Journal of Medical Virology, 93(3), 1409-1413. https://doi.org/10.1002/jmv.26409
  18. Kazemi, S. M., Esmaieli-bandboni, A., Veisi Malekshahi, Z., Shahbaz Sardood, M., Hashemi, M., Majidzadeh, K., & Negahdari, B. (2022). Vitamin D receptor gene polymorphisms and risk of breast cancer in Iranian women. Annals of Medicine and Surgery, 73, 103150. https://doi.org/10.1016/j.amsu.2021.103150
  19. Lafi, Z. M., Irshaid, Y. M., El-Khateeb, M., Ajlouni, K. M., & Hyassat, D. (2015). Association of rs7041 and rs4588 polymorphisms of the vitamin D binding protein and the rs10741657 polymorphism of CYP2R1 with vitamin D status among Jordanian patients. Genetic Testing and Molecular Biomarkers, 19(11), 629-636. https://doi.org/10.1089/gtmb.2015.0058
  20. Laplana, M., Royo, J. L., & Fibla, J. (2018). Vitamin D receptor polymorphisms and risk of enveloped virus infection: A meta-analysis. Gene, 678, 384-394. https://doi.org/10.1016/j.gene.2018.08.017
  21. Luong, K. v. q. ?c, & Nguy?n, L. T. H. (2013). Beneficial role of vitamin D3 in the prevention of certain respiratory diseases. Therapeutic Advances in Respiratory Disease, 7(6), 327-350. https://doi.org/10.1177/1753465813503029
  22. Martins, D., Matos, G. C., Loiola, R. S., D'Annibale, V., & Corvelo, T. (2018). Relationship of vitamin D receptor gene polymorphisms in Helicobacter pylori gastric patients. Clinical and Experimental Gastroenterology, 11, 19-27. https://doi.org/10.2147/CEG.S143332
  23. Mashayekhi, S., Saberi, A., Salehi, Z., Biazar, G., & Mehrdel, R. (2018). VDR and GC gene polymorphisms modulate the risk of lumbar disc degeneration in Iran. Clinical Neurology and Neurosurgery, 165, 67-71. https://doi.org/10.1016/j.clineuro.2017.12.024
  24. Mohammadi, Z., Keshtkar, A., Fayyazbakhsh, F., Ebrahimi, M., Amoli, M. M., Ghorbani, M., Khashayar, P., Dini, M., Ebrahimi-Rad, M., & Larijani, B. (2015). Prevalence of osteoporosis and vitamin D receptor gene polymorphisms (FokI) in an Iranian general population based study (Kurdistan) (IMOS). Medical Journal of The Islamic Republic of Iran, 29, 238.
  25. Naderi, N., Farnood, A., Habibi, M., Derakhshan, F., Balaii, H., Motahari, Z., Agah, M. R., Firouzi, F., Rad, M. G., Aghazadeh, R., Zojaji, H., & Zali, M. R. (2008). Association of vitamin D receptor gene polymorphisms in Iranian patients with inflammatory bowel disease. Journal of Gastroenterology and Hepatology, 23(12), 1816-1822. https://doi.org/10.1111/j.1440-1746.2008.05525.x
  26. Parsania, A., Pouriayevali, M. H., Parsania, M., & Ghorbani, M. (2021). Chelidonium majus L. alkaloid extract enhances TRAIL-induced apoptosis in HeLa cell line through death receptors 4 and 5 upregulation. Gene Reports, 25, 101311. https://doi.org/10.1016/j.genrep.2021.101311
  27. Randolph, A. G., Yip, W. K., Falkenstein-Hagander, K., Weiss, S. T., Janssen, R., Keisling, S., & Bont, L. (2014). Vitamin D-binding protein haplotype is associated with hospitalization for RSV bronchiolitis. Clinical and Experimental Allergy, 44(2), 231-237. https://doi.org/10.1111/cea.12247
  28. Salimi, S., Eskandari, F., Rezaei, M., & Sandoughi, M. (2019). Vitamin D receptor rs2228570 and rs731236 polymorphisms are susceptible factors for systemic lupus erythematosus. Advanced Biomedical Research, 8, 48-48. https://doi.org/10.4103/abr.abr_19_19
  29. Sargazi, S., Sheervalilou, R., Rokni, M., Shirvaliloo, M., Shahraki, O., & Rezaei, N. (2021). The role of autophagy in controlling SARS-CoV-2 infection: An overview on virophagy-mediated molecular drug targets. Cell Biology International, 45(8), 1599-1612. https://doi.org/10.1002/cbin.11609
  30. Shah Alam, M., Czajkowsky, D. M., Aminul Islam, M. d., & Ataur Rahman, M. d. (2021). The role of vitamin D in reducing SARS-CoV-2 infection: An update. International Immunopharmacology, 97, 107686. https://doi.org/10.1016/j.intimp.2021.107686
  31. Sheervalilou, R., Ahmadzadeh, J., Alavi, S., Mobaraki, K., Sargazi, S., Shirvaliloo, M., Golchin, A., Yekanlou, A., & Mehranfar, S. (2021). Evaluation of diagnostic modalities for SARS-Cov-2: A review study. International Journal of Epidemiologic Research, 8(3), 129-137. https://doi.org/10.34172/ijer.2021.24
  32. Sheervalilou, R., Shirvaliloo, M., Sargazi, S., Bahari, S., Saravani, R., Shahraki, J., Shirvalilou, S., Shahraki, O., Nazarlou, Z., Shams, Z., & Ghaznavi, H. (2022). Convalescent blood: Current perspective on the efficacy of a legacy approach in COVID-19 treatment. Blood Purification, 51(1), 1-14. https://doi.org/10.1159/000513164
  33. Sheervalilou, R., Shirvaliloo, M., Sargazi, S., Shirvalilou, S., Shahraki, O., Pilehvar-Soltanahmadi, Y., Sarhadi, A., Nazarlou, Z., Ghaznavi, H., & Khoei, S. (2021). Application of nanobiotechnology for early diagnosis of SARS-CoV-2 infection in the COVID-19 pandemic. Applied Microbiology and Biotechnology, 105(7), 2615-2624. https://doi.org/10.1007/s00253-021-11197-y
  34. Soroush, N., Radfar, M., Hamidi, A. K., Abdollahi, M., Qorbani, M., Razi, F., Esfahani, E. N., & Amoli, M. M. (2017). Vitamin D receptor gene FokI variant in diabetic foot ulcer and its relation with oxidative stress. Gene, 599, 87-91. https://doi.org/10.1016/j.gene.2016.11.012
  35. Sutaria, N., Liu, C. T., & Chen, T. C. (2014). Vitamin D status, receptor gene polymorphisms, and supplementation on tuberculosis: A systematic review of case-control studies and randomized controlled trials. Journal of Clinical and Translational Endocrinology, 1(4), 151-160. https://doi.org/10.1016/j.jcte.2014.08.001
  36. Tabrizi, R., Moosazadeh, M., Akbari, M., Dabbaghmanesh, M. H., Mohamadkhani, M., Asemi, Z., & Lankarani, K. B. (2018). High prevalence of vitamin D deficiency among Iranian population: A systematic review and meta-analysis. Iranian Journal of Medical Sciences, 43(2), 125-139. Retrieved from https://pubmed.ncbi.nlm.nih.gov/29749981, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5936844
  37. Triantos, C., Aggeletopoulou, I., Kalafateli, M., Spantidea, P. I., Vourli, G., Diamantopoulou, G., & Thomopoulos, K. (2018). Prognostic significance of vitamin D receptor (VDR) gene polymorphisms in liver cirrhosis. Science Reports, 8(1), 14065. https://doi.org/10.1038/s41598-018-32482-3
  38. Uitterlinden, A. G., Fang, Y., Van Meurs, J. B., Pols, H. A., & Van Leeuwen, J. P. (2004). Genetics and biology of vitamin D receptor polymorphisms. Gene, 338(2), 143-156. https://doi.org/10.1016/j.gene.2004.05.014
  39. Vatandost, S., Jahani, M., Afshari, A., Amiri, M. R., Heidarimoghadam, R., & Mohammadi, Y. (2018). Prevalence of vitamin D deficiency in Iran: A systematic review and meta-analysis. Nutrition and Health, 24(4), 269-278. https://doi.org/10.1177/0260106018802968
  40. Weir, E. K., Thenappan, T., Bhargava, M., & Chen, Y. (2020). Does vitamin D deficiency increase the severity of COVID-19? Clinical Medicine (London, England), 20(4), e107-e108. https://doi.org/10.7861/clinmed.2020-0301
  41. Zarrin, R., Bagheri, M., Mehdizadeh, A., Ayremlou, P., & Faghfouri, A. H. (2018). The association of FokI and ApaI polymorphisms in vitamin D receptor gene with autoimmune thyroid diseases in the northwest of Iran. Medical Journal of the Islamic Republic of Iran, 32, 18. https://doi.org/10.14196/mjiri.32.4
  42. Zhou, P., Yang, X. -L., Wang, X. -G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., …Zheng, X.-S. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270-273. https://doi.org/10.1038/s41586-020-2012-7

VitaminDWiki - 30 studies in both categories Virus and Vitamin D Receptor

This list is automatically updated

VitaminDWiki - 6 studies in both categories Virus and Vitamin D Binding Protein

This list is automatically updated

Created by admin. Last Modification: Thursday July 21, 2022 15:04:35 GMT-0000 by admin. (Version 2)
See any problem with this page? Report it (WORKS NOV 2021)