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Abstract

Purpose Vitamin D pathway single nucleotide polymor-
phisms (SNPs) are potentially useful proxies for investi-
gating whether circulating vitamin D metabolites [total
25-hydroxyvitamin-D, 25(OH)D; 1,25-dihydroxyvitamin,
1,25(0OH),D] are causally related to prostate cancer. We
investigated associations of sixteen SNPs across seven
genes with prostate-specific antigen-detected prostate
cancer.

Methods In a nested case—control study (within the Pro-
tecT trial), we estimated odds ratios and 95 % confidence
intervals (Cls) quantifying associations between SNPs and
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prostate cancer. Subgroup analyses investigated whether
associations were stronger in men who had high/low sun
exposure [a proxy for 25(OH)D]. We quantified associa-
tions of SNPs with stage (T1-T2/T3-T4) and grade (<7/
>7). Multiple variant scores included SNPs encoding
proteins involved in 25(OH)D synthesis and metabolism.

Results We included 1,275 prostate cancer cases (141
locally advanced, 385 high grades) and 2,062 healthy
controls. Vitamin D-binding protein SNPs were associated
with prostate cancer (rs4588-A: OR 1.20, CI 1.01, 1.41,
p = 0.04; rs7041-T: OR 1.19, CI 1.02, 1.38, p = 0.03).
Low 25(OH)D metabolism score was associated with high
(vs low) grade (OR 0.76, CI 0.63, 0.93, p = 0.01); there
was a similar association of its component variants:
rs6013897-A in CYP24A1 (OR 0.78, CI 0.60, 1.01,
p = 0.06) and rs10877012-T in CYP27B1 (OR 0.80, CI
0.63, 1.02, p = 0.07). There was no evidence that associ-
ations differed by level of sun exposure.
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Conclusion We found some evidence that vitamin D
pathway SNPs were associated with prostate cancer risk
and grade, but not stage. There was no evidence of an
association in men with deficient vitamin D (measured by
having low sun exposure).

Keywords Prostate cancer - Vitamin D - Vitamin D
pathway genes - 25 hydroxyvitamin-D -
1,25-dihydroxyvitamin-D

Introduction

Prostate cancer is the most common male cancer in indus-
trialized countries but knowledge of modifiable risk factors
is limited. Metabolites of vitamin D [total 25-hydroxyvita-
min-D, 25(OH)D; 1,25-dihydroxyvitamin, 1,25(OH),D]
control cellular growth and differentiation [1, 2], and
administration of vitamin D analogues inhibits the progres-
sion of prostate cancer in animal models [3, 4] and in phase II
trials [5]. In line with ecological studies and our under-
standing of the biological actions of vitamin D, other epi-
demiological studies have shown inverse associations of
circulating total 25(OH)D with prostate cancer risk [1, 6, 7].
Overall, however, the evidence is inconsistent, with our
recent meta-analyses finding little evidence that either
increased life course sun exposure, dietary vitamin D, or
circulating 25(OH)D or 1,25(OH),D are associated with
prostate cancer risk [8—10]. In line with some other studies
[10], recent results from the cohort reported in this paper
found a two-fold increased risk of more aggressive (locally
advanced stage and/or high grade) prostate cancers in men
with deficient (vs adequate) circulating 25(OH)D [11], but
no association of 1,25(OH),D with prostate cancer risk,
stage, or grade [12].

In Mendelian randomization analyses, genetic variants
can be used as proxy measures of nutritional exposure to
determine the unconfounded and unbiased effect of modi-
fiable risk factors on disease outcomes since they are not
subject to the biases commonly found in observational
studies (e.g., reverse causation, recall bias, confounding)
[13, 14]. SNPs that are located in genes related to vitamin
D metabolism and signalling could lend support to the
hypothesis that vitamin D is related to prostate cancer and
thus improve the case for a causal relationship. Several
genetic variants regulate or influence the levels or actions
of our exposure of interest [circulating 25(OH)D and
1,25(0OH),D]. Thus, if the intermediate phenotype is
causally associated with the outcome (prostate cancer) then
we would expect the genetic variants to be associated with
the outcome, to the extent that the genetic variants affect
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the intermediate phenotype. There are a number of single
nucleotide polymorphisms (SNPs) involved in the vitamin
D pathway which are potentially useful proxies for inves-
tigating whether circulating vitamin D is causally related to
prostate cancer: vitamin D 25-hydroxylase enzyme
(CYP2RI) converts provitamin D (from sun exposure or
dietary intake) into circulating 25(OH)D [15]; 1-o-
hydroxylase  (CYP27B1) converts 25(OH)D into
1,25(0OH),D (the active form of the hormone) [16]; circu-
lating 1,25(OH),D is degraded by 24-hydroxylase
(CYP24A1) [16] to 24,25(OH),D; vitamin D-binding pro-
tein (VDBP or GC) is the major carrier of 25(OH)D and
1,25(0OH),D, transporting the metabolites to the target tis-
sue [17]; and the vitamin D-receptor gene (VDR) is a key
mediator of the biological actions of 1,25(OH),D [2]. VDR
SNPs have not been found to be associated with circulating
vitamin D levels in previous studies, but we include these
SNPs in our analysis as components of the vitamin D
pathway that could have an influence on cancer, including
prostate cancer, despite not being associated with circu-
lating vitamin D levels [18]. Recent genome-wide associ-
ation studies (GWAS) have uncovered robust associations
of 25(OH)D concentration with polymorphisms in the
genetic variants in VDBP, CYP2RI, CYP24Al, and a
region on chromosome 11 encompassing the genes for the
7-dehydrocholesterol reductase (DHCR7) and NAD syn-
thetase 1 (NADSYNT1) [19, 20]. Within this region, DHCR7
is the most obvious candidate encoding an enzyme that
catalyzes the conversion of 7-dehydrocholesterol (a pre-
cursor of vitamin D) to cholesterol.

We investigated associations of vitamin D pathway
polymorphisms with PSA-detected prostate cancer, overall
and stratified by stage and grade, in a large UK-wide
population-based case—control study [21]. Few studies
involve exclusively PSA-detected prostate cancer, an
important factor in the PSA-era due to the increasingly
earlier detection of localized disease. We hypothesized that
polymorphisms that reflect lower levels or cellular uptake
of total 25(OH)D or 1,25(0OH),D are associated with an
increased risk of prostate cancer and that the association is
stronger for locally advanced versus localized, and high-
grade versus low-grade cancer. Given previous reports [10,
11, 22-24], we also investigated the possibility of a gene—
environment interaction, i.e., whether the association is
stronger in men who have a low level of sun exposure (as a
proxy for deficient vitamin D status). We hypothesized
that, among men with deficient vitamin D levels, those who
have a genotype which improves cellular vitamin D status
would have a lower risk of prostate cancer than men
without this genotype, whereas this association would not
be as strong in men with sufficient levels.
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Materials and methods
Participants

The study is nested within a multi-center randomized
controlled trial of treatments for localized disease: the
Prostate Testing for cancer and Treatment (ProtecT) study
[11, 21]. During recruitment to the ProtecT study (between
2001 and 2009), over 100,000 men aged 50-69 years at
337 general practices in nine UK centers (Birmingham,
Bristol, Cambridge, Cardiff, Edinburgh, Leeds, Leicester,
Newcastle, Sheffield) were offered a PSA test at a com-
munity-based ‘prostate check clinic’, and those with raised
levels (>3 ng/mL) were offered diagnostic biopsy.
Detected tumors were all histologically confirmed and
clinically staged using the TNM system [25]. Cancer
stages T1-T2 were categorized as ‘localized’ and T3-T4
as ‘locally advanced’ as there were very few T4/metasta-
sized tumors. ‘High-grade’ tumors were defined as a
Gleason score >7 and low-grade tumors as Gleason score
<7, after review of biopsy cores by a specialist uro-
pathologist.

Case—control selection

A total of 1,914 cases and 48,692 controls were potentially
eligible for selection for the current study (based on men
recruited between 2003 and 2008), had provided a plasma
sample, and consented to prostate cancer research. We
randomly selected one stratum-matched control for each
case from those men who had provided a non-fasted blood
sample at the prostate check clinic. Controls were ran-
domly selected from the same stratum—i.e., 5-year age
band (age at PSA test) and GP/family practice—as cases.
Prostate check clinics were held over consecutive weeks at
each GP practice, and so matching cases and controls by
GP also matches on time and season of blood draw. All
participants in the ProtecT prostate check clinics who had
no evidence of prostate cancer were eligible for selection as
controls; that is, men with a PSA test <3 ng/mL, or a raised
PSA (=3 ng/mL) combined with at least one negative
biopsy and no subsequent prostate cancer diagnosis during
the follow-up protocol for negative biopsies. All men
provided written informed consent prior to inclusion in the
study. Trent Multicentre Research Ethics Committee
(MREC) approved the ProtecT study (MREC/01/4/025)
and the associated ProMPT study which collected biolog-
ical material (MREC/01/4/061).

Vitamin D pathway genes and vitamin D assays

The following genes were genotyped in ProtecT partici-
pants as part of a genetic association study examining the

effect of 70 diet/nutrition relevant SNPs on prostate cancer
risk [18, 26]: VDR (Apal: 157975232, Bsml: 151544410,
Fokl: rs10735810, Tagl: rs731236, Cdx2: rs11568820);
VDBP (154588, 1s7041); and CYP27B1 (rs10877012). DNA
extraction was performed by Tepnel (http://www.tepnel.
com), and genotyping was undertaken by KBioscience Ltd
(www.kbioscience.co.uk), who use their own form of
competitive allele-specific PCR (KASPar) and Tagman™,
for SNP analysis. Samples with more than 10 % genotype
failure (7 SNPs) were defined as having poor DNA quality
(2.6 %) and dropped from further analysis. Genotyping
was repeated in 10 % of the study samples (with inde-
pendent assessment) and for 99.98 % of those samples
there was exact agreement between the two.

The remaining vitamin D pathway SNPs (CYP2RI:
rs10741657, rs2060793; CYP24A1: rs6013897; DHCR7:
rs12785878; NADSYNI1: rs3829251; VDBP: rs2282679,
rs1155563; CYP27B1: rs703842) were obtained from
genome-wide genotyping of ProtecT samples, carried out
on 3,390 individuals [27] at the Center National de
Génotypage (Evry, France), using the Illumina
Human660W-Quad_v1_A array (Illumina Inc.). The qual-
ity control process done before imputation excluded indi-
viduals on the basis of the following: sex mismatches,
minimal (<0.325) or excessive heterozygosity (>0.345),
disproportionate levels of individual missingness (>3 %),
cryptic relatedness measured as proportion of identity by
descent (IBD > 0.1), and insufficient sample replication
(IBD < 0.8). The remaining individuals were assessed for
evidence of population stratification by multidimensional
scaling analysis and compared with HapMap II (release 22)
European descent (CEU), Han Chinese (CHB), Japanese
(JPT), and Yoruba (YRI) reference populations; all indi-
viduals with non-European ancestry were removed. SNPs
with a minor allele frequency below 1 %, a call rate of
<95 % or evidence for violations of Hardy—Weinberg
equilibrium (p < 5 x 1077), were discarded.

Circulating concentrations of total 25(OH)D (ng/mL)
and 1,25(OH),D (pg/mL) were measured in blood plasma
collected at the prostate check clinic, prior to diagnosis, as
described previously [11, 28]. Briefly, 25(OH)D, and
25(OH)D; samples were measured using tandem mass
spectrometry, in 31 batches over a period of approximately
3 months [11], and 1,25(OH),D samples were quantified
by immunoassay [28] over a 2 months period using a single
batch of reagents. Vitamin D levels were measured blind to
diagnosis. Circulating concentrations of 25(OH)D, and
25(0OH)D; were measured in nanograms per milliliter (ng/
mL) where 1 ng/mL = 2.5 nmol/L (nanomoles per liter),
and 1,25(OH),D was measured in picomoles per liter
(pmol/L) where 1 pg/mL = 2.6 pmol/L. Total 25(OH)D
(ng/mL) was calculated as the summation of 25(OH)D, and
25(0OH)D;,
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Vitamin D pathway scores

Multiple variant allele scores were created based on SNPs
found to be associated with vitamin D status in prior studies
[29] and in the current study [30]. Two scores were calcu-
lated by summing up all appropriate SNPs in each individual:
(1) Synthesis score: genes encoding proteins involved in
25(OH)D synthesis (CYP2RI 1s10741657, DHCR7
rs12785878) [29]; and (2) Metabolism score: genes encoding
proteins involved in 25(OH)D metabolism (CYP24Al
rs6013897, CYP27B11s10877012) [29]. Each SNP genotype
was coded as 0, 1, or 2 depending on the number of risk
alleles the individual carries and their effects on vitamin D
levels calculated so that an increasing score indicates
decreasing levels of vitamin D. If there were missing SNP
data, the individual was given a missing score.

Covariates

Measures of height, weight, weekly exercise, smoking
status, family history of prostate cancer, history of benign
prostatic hyperplasia, diabetes, occupational social class,
and self-reported ethnicity were collected at the time of the
initial PSA test [31], prior to knowledge of the PSA level or
diagnosis in 85 % of men. We calculated body mass index
(BMI; kg/m?), which represents general adiposity. A
measure of ‘‘intense sun exposure’’ was derived by sum-
ming time spent sunbathing, on holiday, and in foreign
countries, from birth up until 2 years prior to the prostate
clinic [8]. Missing answers were considered as zero;
however, scores were not calculated if more than half of
answers were missing. These sun exposure questions have
been analyzed in detail previously, and further details of
their derivation are published [8].

To avoid bias caused by complete case analysis [32], we
multiply imputed all missing covariate values (i = 10)
using chained equations [33], assuming those values could
be predicted without bias from the observed relationships
between covariates and the outcome measure, and substi-
tuting imputed values for missing values. The proportion of
missing values per covariate was: age-group 0 %, ethnicity
0.3 %, BMI 28 %, smoking 26 %, family history of pros-
tate cancer 11 %, history of BPH 2 %, diabetes 30 %,
social class 6 %, and intense sun exposure 48 %.

Statistical analysis

Vitamin D pathway SNPs and scores and circulating

25(0H)D and 1,25(0H),D

Genotypes were checked for deviation from Hardy—Wein-
berg equilibrium using the hwsnp function implemented in
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Stata (Stata Corporation, College Station, Texas). Linear
regression was used to examine the association of 25(OH)D
and 1,25(OH),D with individual SNPs and genetic scores,
assuming an additive genetic model. Analyses were adjusted
by age, study center, and season of blood draw.

Vitamin D pathway SNPs and scores and prostate cancer
risk

To allow for the matched sets of cases and controls, con-
ditional logistic regression was used to estimate odds ratios
(OR) and 95 % confidence intervals (Cls) quantifying the
association between exposure and all prostate cancers. The
model included the case—control matching variables, age,
and GP/family practice. A case-only analysis used uncon-
ditional logistic regression, controlling for age, study cen-
ter, and season of blood draw (i.e., to reflect the matching
variables), to quantify associations of SNPs with prostate
cancer stage (locally advanced vs localized) and grade
[high (>7) vs low (<7)]. A case-only analysis was used as
all cases have undergone biopsy, therefore removing
potential detection bias which could otherwise occur
through misclassification of control status because of
imperfect sensitivity of the PSA test [34]. SNPs were
included as single variants, and effects were estimated per
change in allele.

Gene—environment interaction of SNPs and scores
and levels on prostate cancer

The association of SNPs with prostate cancer was repeated,
stratified by level of sun exposure. Since serum vitamin D
level is an effect common to vitamin D pathway SNPs and
confounders, attempting to estimate this association using
serum vitamin D levels would have resulted in biased
estimates which may have led to spurious associations
between SNPs and prostate cancer risk (this is known as
collider bias [35], Fig. 1). Instead, we used sun exposure as
a proxy for high or low vitamin D level due to environ-
mental factors, assuming that men with low sun exposure
will tend to have lower vitamin D levels and that sun
exposure was not associated with vitamin D pathway
SNPs. The association of sun exposure with serum vitamin
D level and SNPs were tested using ¢ tests and Chi-squared
tests, respectively.

A likelihood ratio test, comparing the main effects
model with the model including an interaction term
between the SNP and level of sun exposure, was used to
calculate a p value for interaction. A dichotomized indi-
cator of sun exposure was created based on levels above
and below the median level of sun exposure.
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Fig. 1 Diagram describing collider bias. a If we condition on
circulating vitamin D levels (box), we could create on association of
SNPs with confounders (dashed line). b If we condition on sun
exposure (box), the association between SNPs and confounders is not
generated because the SNPs are not associated with sun exposure
(dashed line is removed)

Population stratification

The top 10 principal components (PCs) that reflect the
population’s genetic structure were estimated according to
Price et al. [36] from genome-wide SNPs genotyped,
imputed and cleaned as described above. All 10 PCs were
included as covariates in all regression models to account
for confounding by population stratification.

All analyses were carried out in Stata 12 (StataCorp,
2012. College Station, TX). We used ice for multiple
imputation with chained equations [33] for imputing
missing data. All tests of statistical significance were two-
sided.

Results
Characteristics of study participants

The current analysis includes 1,275 prostate cancer cases
[1,131 (88.7 %) localized, 141 (11.1 %) locally advanced,
3 (0.24 %) missing stage; 887 (69.6 %) low grade, 385
(30.2 %) high grade, 3 (0.24 %) missing grade], and 2,062
controls that have at least one available SNP. 39.3 % of
participants had data available on all SNPs, and 43 % were

missing data on three or fewer SNPs. No man was missing
more than 10 SNPs. Of these, 926 cases and 872 controls
had an available 25(OH)D measurement and 779 cases and
737 controls had an available 1,25(OH),D measurement
(Fig. 2). The mean age of cases was 62.6 years and of
controls was 61.7 years. As expected, the mean PSA level
in cases was higher than in controls (9.5 vs 1.0 ng/mL).
There were no substantial differences in baseline charac-
teristics between cases and controls, except that more cases
had a family history of prostate cancer versus controls (8.2
vs 5.6 %) and more cases had a normal (18.5-25) BMI
(30.1 vs 25.5 %). Of the 99.3 % of subjects, who had
recorded ethnicity, 98.9 % self-identified as white.

The mean (SD) 25(OH)D concentration in cases was
23.7 ng mL (8.7) and in controls was 23.5 ng/mL (8.7)
(p for difference = 0.62). The mean (SD) 1,25(OH),D
concentration in cases was 40.6 pg.mL (18.4) and in con-
trols was 40.9 pg/mL (18.1) (p for difference = 0.74).
There were no differences between mean storage times of
blood samples between cases and controls. Only VDR SNP
1s7975232 was out of Hardy—Weinberg equilibrium in
controls (p = 0.01).

Vitamin D pathway SNPs and covariates

For the most part, there was no evidence of associations
between vitamin D pathway SNPS and the covariates (data
not shown). There was evidence of an association of VDBP
rs4588-A with BMI (p = 0.01), CYP27B1 rs703842-G
with smoking status (p = 0.02), diabetes (p = 0.01) and
social class (p = 0.01) and CY27BI rs10877012-T with
smoking status (p = 0.01), and diabetes (p = 0.01). These

1914 cases & 48692 controls
Potentially eligible for selection, had provided a plasma sample and
relevant consents.

1275 cases & 2062 matched controls
Have at least one available vitamin D-pathway
SNP

926 cases & 872 controls additionally have an available 25(0H)D
measurement
779 cases & 737 controls additionally have an available 1,25(0H)2D
measurement

Fig. 2 Flowchart describing the case—control selection for inclusion
in this analysis
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associations are possibly due to chance as we carried out
multiple tests, i.e., we tested 16 SNPs against eight
covariates.

Vitamin D pathway SNPs and circulating 250HD
and 1,25(0OH),D

There were up to 1,778 individuals with genome-wide SNP
data and 25(OH)D and 1,25(0OH),D measurements. Of the
16 SNPs investigated, two SNPs in CYP2R]1 (rs10741657-
A, 152060793-A) and two SNPs in VDR (Fokl-A, Taql-C)
were associated with 25(OH)D concentrations (with ss
ranging from <0.001 to 0.04) (Table 1). One SNP in
DHCRT (rs12785878-G) and four SNPs in VDR (Apal-C,
Bsml-A, Taql-C, Cdxl-A) were associated with
1,25(OH),;D concentrations (with p values ranging from
0.01 to 0.04) (Table 1). Four SNPs in VDBP (rs2282679-G,
rs4588-A, rs7041-T, rs1155563-C) were associated with
both 25(OH)D and 1,25(OH),D concentrations (all p val-
ues <0.01) (Table 1). The above analyses were limited to
controls only and were adjusted for age, study center,
season of blood draw, and PCs. Nevertheless, associations
of SNPs with 25(OH)D and 1,25(0OH),D concentrations did
not differ by case—control status (results not shown). Based
on the proportion of trait variability explained and on the
F-statistic, which is related to the strength of the instru-
ment, the best instruments for 25(OH)D concentrations in
this population were VDBP SNPs (F = 12.2-22.3). Strong
associations were detected between all VDBP SNPs and
1,25(0OH),D (F = 5.88-9.62). However, each polymor-
phism explained only ~1 % of the trait variance, and the
F-statistics were below 10, the conventional lower limit of
a strong instrument [30].

Vitamin D pathway SNPs and prostate cancer risk

There was evidence of an association of linked VDBP
SNPs rs4588-A and rs7041-T, representing low levels of
25(0OH)D, with prostate cancer risk (rs4588: OR 1.20,
95 % CI 1.01, 1.41, p = 0.04; rs7041: OR 1.19, 95 % CI
1.02, 1.38, p = 0.03). There was no evidence that the other
SNPs or scores were associated with prostate cancer risk
(Table 2).

There was no convincing evidence that either the vita-
min D pathway SNPs or the two scores were associated
with stage (Table 3).There was evidence that the metabo-
lism score, indicating decreasing 25(OH)D levels, was
associated with Gleason grade (high vs low) (OR 0.76,
95 % C10.63, 0.93, p = 0.01), and marginal evidence for a
similar association of its component variants rs6013897-A
in CYP24A1 (OR 0.78, 95 % CI 0.60, 1.01, p = 0.06) and
rs10877012-T in CYP27BI (OR 0.80, 95 % CI 0.63, 1.02,
p = 0.07) (representing low levels of 25(OH)D).
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Vitamin D pathway SNPs, sun exposure and prostate
cancer risk

The mean 25(OH)D level in men who had below the
median sun exposure was 22.1 ng/nL. and who had above
the median sun exposure was 24.6 ng/mL (p for difference
<0.001). None of the vitamin D pathway SNPs were
associated with sun exposure (data available on request).
There was no evidence of an association between any SNPs
or scores and prostate cancer risk within men with below
the median sun exposure (all p interaction >0.04)
(Table 4).

Population stratification

All analyses were adjusted for population stratification.
There was no evidence of an association between each SNP
and score with the principal components used in this
adjustment, indicating that population stratification was not
likely to have affected our results (Supplementary
Table 1).

Discussion

This study, of 1,275 prostate cancer cases and 2,062
healthy controls from the ProtecT study, investigated
associations of sixteen vitamin D pathway polymorphisms
with PSA-detected prostate cancer risk and, in cases, with
stage and Gleason grade. There was evidence that two
SNPs in VDBP, representing low 25(OH)D levels, were
associated with increased prostate cancer risk and that a
score measuring metabolism (indicating low 25(OH)D
levels) and its component variants were associated with
high Gleason grade. There was no other convincing evi-
dence that vitamin D pathway SNPs were associated with
prostate cancer risk, stage, or grade. There was no evidence
that associations differed by level of sun exposure.

We validated the use of GWAS-identified SNPs in
ProtecT as proxies for serum 25(OH)D as well as of scores
including these variants, confirming associations reported
in previous studies. The synthesis score appeared to be a
reasonably strong instrument, although the scores
explained less than 1 % of the trait variance for circulating
25(OH)D and 1,25(OH),D. Four SNPs in VDBP
(rs2282679, 1s4588, rs7041, rs1155563) were strong
instruments for 25(OH)D, and one SNP in VDBP
(rs1155563) was a strong instrument for 1,25(OH),D)
(those SNPs with F > 10), explaining approximately 2 %
of the variability.

Results from the Health Professionals Follow-up Study
(HPFS) found that variants in CYP27A1 (p = 0.02) and
VDR (12 SNPs, p = 0.01), and a score made up of seven



Cancer Causes Control

TIOLLSOTST “L6SET109ST 191008 WISIOqRIDN

8L8S8LTTSI ‘LSOTHLOTST 91008 SISAPUAS
parsnfpeun ‘uorssaiSar Sursn paje[no[e) “JUSWNISUI SUOXS B SAIBIIPUL
01 < A “(S[PAS] (J UIWEIIA JOJ JUSWNNSUL UE SB NS YOB3 JO pSuans ay) 1) IN'S Yoe £Q paure[dxa I S[OAS] (] UIWE)IA UL ANJIGELIEA JU) JO YONUL MOY SJEIIPUL (L) PaIenbs-y pue onsnels-f

uoneoynens

uonemdod £q Surpunojuod 10y Junodoe 0} syuduodwod Tedroutid ()T pue meIp Poo[q JO UOSBIS ‘IAIUAd Apnis ‘oFe 10eX9 10J Sunsnlpe ‘UoIssaI3al Jursn pIJR[NO[Ed ‘S[AA] UBSUWL UI JOUIIPI

[BAISJUL Q0UAPYUOD J) ‘Aoudnbaiy of9[[e Joutw JyH

090 65t 98¢ 100 (€€'9 21’ €Le 010 980 689 SS°0 OL0 ‘€r'1-) €€°0— 120 v/D 11°e1bzr - (0T889ST181) TXPD AAA
050 e 68 Y00 Or'y ‘€1°0) 9TT  0v0 s8€ 169 ¥0'0 (06'T “90°0) 860 (040] J/L 1rerber (9€zieLsy) heL YAA
010 LSO ¥8S 340 (90°€ “0€'T—) 880  0L0 0€9 889 100 (ze'0— ‘61Cc—) 9TTI— 80 v/9 Trerbgr  (0185€L018Y) MIod AAA
050 S8'¢  08S 200 (SL¥05°0) 9T 0v0 9I'E  ¥89 LO0 (LL'T *90°0—) S8°0 (0140] v/9 1rerber  (OIPPPSIsD Twsg IAA
0L0 6Ly 08S 00 (8€0— ‘I¥'v—) 6€T— 010 880 189 620 (or'0 ‘ze'1-) 90— 870 oV 1retbzt  (zegsLoLsy 1edy YAA
000 LTO 1LS wo (SO'T ‘6v'C—) TLo— 000 00 TL9 S6'0 (€L°0 '8L°0—) 00— MO[-ySIH 21008 WISOqIGI
000 910 LS 980 Y0 ‘Sv't—) 0T0— 000 000  SL9 06'0 (€0°T ‘16'0—) 900 £€°0 h¥js] gel-reber TI0LL80TSY 19LTdAD
000 000 T6S 880 (S0 '8€CT—) LT'0— 000 100 L69 160 (680 ‘10'T—) 900—  €€0 37A4 gel-reiber TH8EOLSE 14LTdAD
010 ¥8°0  T6S €0 (€01 ‘'9Tv—) 91— 000 8I'0  L69 L9°0 (L8°0 *LET—) STo—  0T0 V/L €1bog L68E10981 1VHTIAD
091 96 TS v000  (IT°1— "IL'S—) Ie—  0L'1 1Tel L69  1000>  (16°0— ‘S8T—) 88'1—  0€0 o/L ciby €96SST1s1 d9dA
080 88'C 98¢ 100 (290— ‘t8v—) we—  06'1 1€91 689  1000>  (LL'O— ‘€ST—) 91— ¥0 RV/s] ciby IY0LST ddA
or't LTS ¥8S 100  (S8°0— ‘6v'S—) LT'E— 0ST 9TTT L89  1000>  (LT'T— ‘TI'€—) yI'ec— 620 \Zp) tiby 88SPS1 dAAA
(1 108 T6S 100  (86'0— ‘19'S—) 6TE— OV'T SPLT  L69  T000> (01— ‘€T€—) LTT—  0€0 /L tiby 6L9787TsT dAAA
050 69T T6S 900 (01°0 “S€°€—) €9'1— 050 1€€  L69 €1°0 (L1'0 ‘8T'1-) 95°0— MO[-YS1H 524095 s152YIUL
0T0 €T T6S LTO (96'0 ‘65'S—) 1€2— 000 €00 L69 890 (89°T *60'T—) 6T0 €1°0 10 7'EIbIT 157628€sT INASAVN
00'1 18'S 265 100 (TI'T— ‘859—) S8'€— 000 00 L69 980 (9T°1 's0'1-) 110 0 O/L 7'EIbII 8L8SSLTIST LIDHA
000 €00 T6S 680 (87T ‘L6'T—) 91'0  0L0 ILY  L69 ¥0'0 (€8T T0°0) 60 €70 v/D zeidrn £6L090T81 T9TdAD
000 €00 T6S 680 (87T ‘L6'T—) 91'0  0L0 ILY  L69 ¥0'0 (€8T 'T0°0) 60 €70 v/D zsidrn LS9TYLOTSE TYCdAD
L(1/3d)
A“HO)ST'1 L(Tw/3u)
uo Aa(HO)ST uo J[a[re

(%) J[a[[e Jourwr  (9) J[9[[e Jourw Jourw

A QonsneIs-y u onpea d 1D % S6 Jowopd ¥ ousneIs-4 u onpea d D % S6 Jo1woPgd AVIN /ofeNy ewosowoly) wsydiowA[oq

s309[qns [onu0d ur suonenuaduod (Tuw/3d) UHO)ST'T pue (Tuwy/Su) Q(HO)ST U0 SINS Aemuyied ( urwelia Jo s1o9o 9y, | d[qelL

pringer

A



Cancer Causes Control

vitamin D pathway genes (CYP27A1, CYP2RI, CYP27BI,
VDBP, CYP24A1, RXRA, VDR. p = 0.008), were associ-
ated with risk of lethal prostate cancer [37]. There were no
associations between prostate cancer risk and 212 SNPs
from 12 genes related to vitamin D (including CYP27A1,
VDBP, CYP27BI1, CYP24A1, VDR) examined in the Pros-
tate, Lung, Colorectal and Ovarian Cancer Screening Trial
(749 incident cases, 781 controls) [23]. Among men in the
lowest tertile of 25(OH)D, there was an association
between three VDR SNPs (rs11574143, rs757343, Bsml)
and prostate cancer risk (the strongest association was for
rs11574143: OR 2.49, 95 % CI 1.51, 4.11). Results from
the National Cancer Institute Breast and Prostate Cancer
Cohort Consortium (BPC3), a pooled analysis of 10,000
cases and 11,000 controls, found that genetic variants near
CYP24A1 were associated with a decreased risk of
aggressive prostate cancer (p trend <0.001), and a score
made of four genes thought to predict circulating levels of
25(0OH)D (VDBP, CYP24Al, CYP2RI1, DHCR?) was rela-
ted to both overall and aggressive prostate cancer [38].
There was no association between prostate cancer risk and
the other SNPs. Variants in the VDR have been associated
with advanced stage or high Gleason grade [18, 39], with a
recent meta-analysis of 13 studies, including data from this
study, finding an association between three VDR poly-
morphisms (Apal, Bsml and Taql) and prostate cancer
grade [18]. However, VDR SNPs have not been consis-
tently associated with 25(OH)D or 1,25(OH),D concen-
trations or with prostate cancer risk. A recent meta-analysis
of 34 studies found no evidence of an association of VDR
Bsml and Fokl with prostate cancer risk [40]. VDR Cdx2
AA genotype was associated with prostate cancer in men
with low 25(OH)D (<15 ng/mL) (p interaction = 0.02)
and with aggressive and high-grade prostate cancer in men
with low 25(OH)D and 1,25(OH),D (p interaction = 0.04
and 0.01, respectively) compared with men with normal
levels [24]. Results from the Physician’s Health Study [22]
found no associations of VDR BsmlI or Taql polymorphisms
and prostate cancer risk (372 incident cases, 591 controls),
although in men with 25(OH)D below the median there
was a 57-62 % reduction in risk of men with the Bsml AA
genotype (RR 0.43, 95 % CI 0.19, 0.98) or the Tagl CC
genotype (data not shown) compared with men with the
GG or TT genotypes. The risk was reduced by 80-90 % in
men aged over 61 years (Bsml: RR 0.18, 95 % CI 0.05,
0.68). Variants in VDR, CYP24Al, and CYP27B1 were
associated with progression to prostate cancer-specific
mortality in a case-only study (n = 1,294) [41]. Our recent
study found no evidence that circulating levels or vitamin
D pathway genes (VDR: Apal, Bsml, Fokl, Taql, Cdx2;
VDBP: rs4588, rs7041; CYP27B1: rs10877012) influence
PSA-defined progression in men with localized prostate
cancer on active monitoring [42].

@ Springer

Our recent epidemiological study from the same cohort
found a two-fold increased risk of more aggressive (locally
advanced stage and/or high grade) prostate cancers in men
deficient in circulating 25(OH)D (<12 ng/mL) [11].
However, none of the SNPs expected to modulate
25(OH)D were associated with prostate cancer risk, stage,
or grade. SNPs in the VDR, a key mediator of the biological
actions of 1,25(OH),D [2], were not associated with stage
or grade. Our recent study found no association between
1,25(0OH),D and prostate cancer risk,stage, or grade [12].
Circulating levels of 1,25(OH),D are tightly regulated [1].
Biological evidence shows that the prostate can locally
convert 25(OH)D to 1,25(OH),D [43, 44], although pros-
tate cancer tissue has a reduced ability to locally convert
25(OH)D to 1,25(OH),D [45]. VDR is present in the
prostate gland [43, 46], so VDR status may better indicate
local 1,25(0OH),D status than circulating levels. Circulating
levels may not be a good indicator of what is happening at
the cellular level. Recent results from the Alpha-Tocoph-
erol, Beta-carotene Cancer Prevention (ATBC), study
found that their observed association between circulating
vitamin D and prostate cancer risk was made stronger when
vitamin D-binding protein concentrations were also ele-
vated [47]. This suggests that VDBP may modulate the
impact of vitamin D status on prostate cancer, even though
the SNPs were not directly associated with prostate cancer
risk overall. Two VDBP SNPs were associated with pros-
tate cancer risk in the current study, although there was no
evidence of an interaction when stratified by sun exposure
(p interaction = 0.12).

Strength and limitations of our study

Our study includes a large sample, with more men with
prostate cancer and matched controls than previous studies,
about which we have extensive information recorded. All
of our men were resident in the UK and 99 % of our
subjects self-reported their ethnicity as white. Since the
decision to biopsy was based on PSA level, some of the
controls with PSA <3 ng/mL will have unidentified pros-
tate cancer [34] (misclassification bias) but this would not
affect our analysis of locally advanced versus localized
cancers (as all cancers were biopsy confirmed). Any mis-
classification of cancer status is likely to be non-differential
with respect to vitamin D pathway polymorphisms, at most
moderately attenuating any effect-estimates [48]. Our case-
only comparison uses 250HD and 1,25(OH),D concen-
trations measured in men diagnosed with locally advanced/
high-grade cancer versus men diagnosed whilst their tumor
was localized/low grade. We categorized cancer stages T3—
T4 as ‘locally advanced’ as there were very few T4/
metastasized tumors [~6 % have distal metastasis (T4 or
M1)].
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Circulating 25(OH)D and 1,25(0OH),D concentrations
were measured at one laboratory, in as few batches and in
as short a time frame as possible (thus attenuating any
potential technical errors of measurement). Circulating
vitamin D levels were measured in plasma collected at the
prostate check clinic prior to diagnosis, with measurement
of vitamin D concentrations blind to diagnosis. The study
is population-based and thus subject to little selection
bias. Circulating levels of 25(OH)D may vary by season
of tissue collection [49], which is not a problem when
analyzing vitamin D pathway SNPs. It is possible that we
are studying a relatively healthy population, within which
there is not enough variation in vitamin D status to be able
to detect an affect [25(OH)D: IQR in cases: 17.4,28.9 ng/
mL, controls: 17.8,28.4 ng/mL; 1,25(0OH),D: IQR in
cases = 27.5,51.1 pg/mL, controls: 27.8,50.8]. Circulat-
ing 25(OH)D and 1,25(0OH),D may not reflect the amount
of 25(OH)D and 1,25(0OH),D available for use within the
target tissues [50], so we may be using the wrong
instruments to examine the effects of vitamin D status.
Even though our sample was large, because the genetic
variants explain a small proportion of the variability in
circulating vitamin D levels, we would need an even
larger sample to find robust evidence of an effect on
prostate cancer and to be able to provide accurate esti-
mates for this effect.

Our Mendelian randomization (MR) approach is more
reliable than results from observational studies and can be
used to strengthen the evidence of causality since geno-
types are unlikely to be affected by confounding or
reverse causation and are not subject to high levels of
measurement error. Our SNPs and genetic scores were
mostly not associated with the confounders, thus satisfy-
ing one of the main assumptions of MR. However, we did
find evidence of an association of rs4588 with BMI and
rs10877012 with smoking. These associations may be
chance findings, but, if real, may pose a problem to our
inference of causality, as BMI has been associated with
prostate cancer [51]. All SNPs, except for the VDR SNPs,
were assumed to be strong instruments based on previ-
ously published data, although in our control population
only the VDBP SNPs were validated as such. Another
important consideration in MR is that the instrument (i.e.,
the genetic score) should be associated with the outcome
of interest (i.e., prostate cancer) only via the exposure
(i.e., circulating vitamin D levels). For this assumption to
hold the SNPs included in the genetic score cannot have
pleiotropic effects on prostate cancer. This means that a
genetic variant with biological pleiotropy will addition-
ally affect prostate cancer via phenotypes unrelated to
circulating vitamin D level. Since we cannot test the
assumption of no effect of the instrument on the outcome
via pathways other than through the exposure of interest,

@ Springer

it is not possible to completely rule out pleiotropic
influences on our results.

Conclusion

Our study found evidence that two SNPs in vitamin
D-binding protein were associated with prostate cancer risk
(rs4588-A and rs7041-T). A score measuring metabolism,
and its component variants (rs6013897-A in CYP24A1 and
rs10877012T in CYP27B1), were associated with Gleason
grade (high grade vs low grade). There was no association of
other vitamin D pathway polymorphisms being associated
with overall prostate cancer risk, stage, or grade. There was
no evidence of an association in men with deficient vitamin D
(measured by having low sun exposure).
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