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Exploring human-genome gut-microbiome interaction in
Parkinson’s disease
Zachary D. Wallen 1, William J. Stone 1, Stewart A. Factor2, Eric Molho3, Cyrus P. Zabetian 4, David G. Standaert 1 and
Haydeh Payami 1✉

The causes of complex diseases remain an enigma despite decades of epidemiologic research on environmental risks and genome-
wide studies that have uncovered tens or hundreds of susceptibility loci for each disease. We hypothesize that the microbiome is
the missing link. Genetic studies have shown that overexpression of alpha-synuclein, a key pathological protein in Parkinson’s
disease (PD), can cause familial PD and variants at alpha-synuclein locus confer risk of idiopathic PD. Recently, dysbiosis of gut
microbiome in PD was identified: altered abundances of three microbial clusters were found, one of which was composed of
opportunistic pathogens. Using two large datasets, we found evidence that the overabundance of opportunistic pathogens in PD
gut is influenced by the host genotype at the alpha-synuclein locus, and that the variants responsible modulate alpha-synuclein
expression. Results put forth testable hypotheses on the role of gut microbiome in the pathogenesis of PD, the incomplete
penetrance of PD susceptibility genes, and potential triggers of pathology in the gut.
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INTRODUCTION
Parkinson’s disease (PD) affects over 6 million people worldwide,
having doubled in one decade, and continues to rapidly increase
in prevalence with the aging of the world population1. PD is a
progressive degenerative disease which affects the brain, the
peripheral nervous system, and the gastrointestinal tract, causing
progressive, debilitating movement disorders, gastrointestinal and
autonomic dysfunction, sleep disorders, and cognitive impair-
ment. Currently, there is no prevention, cure, or treatment known
to slow the progression of the disease.
Like other common late-onset disorders, PD has Mendelian

forms caused by rare mutations, but the vast majority of cases
remain idiopathic. Both genetic and environmental risk factors
have been identified2–4, but none have large enough effect sizes
individually or in combination to fully encapsulate disease risk5–8.
The triggers that initiate the onset of PD pathology are unknown.
There is a connection between PD and the gastrointestinal tract9,10

and the gut microbiome11. The gut microbiome is a relatively new
and increasingly active area of research in human disease12–14.
Studies on PD have consistently found altered gut microbiome, with
depletion of short-chain fatty acid (SCFA) producing bacteria, and
enrichment of Lactobacillus and Bifidobacterium11,15,16. Most studies
to date have been modest in size, and therefore have examined
mostly common microorganisms. We recently reported a
microbiome-wide association study in PD, using two large datasets
and internal replication, which enabled investigation of less common
taxa not reported before11. In these datasets, reduced SCFA-
producing bacteria and elevated Lactobacillus and Bifidobacterium
were robustly confirmed. In addition, a significant increase was
detected in the relative abundance of a poly-microbial cluster of
opportunistic pathogens, including Corynebacterium_1 (C. amycola-
tum, C. lactis), Porphyromonas (P. asaccharolytica, P. bennonis,
P. somerae, P. uenonis), and Prevotella (P. bivia, P. buccalis, P. disiens,
P. timonensis). These are commensal bacteria with normally low

abundance in the gut; in fact, Corynebacterium is commensal to skin
microbiome not the gut. They are referred to as opportunistic
pathogens in the literature (as opposed to pathobionts) because they
are not prevalent native members of the gut, rather they are known
to be able to cause infections in any part of the body if they gain
access to a sterile site through wounds, surgery or permeable
membranes and are allowed to grow due to a compromised
immune system (literature reviewed in ref. 11).
Overabundance of opportunistic pathogens in PD gut was of

interest because it harks back to the hypothesis advanced by
Professor Heiko Braak which proposes that in non-familial forms of
PD, the disease is triggered by an unknown pathogen in the gut
and spreads to the brain17,18. Braak’s hypothesis was based on
pathological studies of postmortem human brain, stained using
antibodies to alpha-synuclein. Misfolded alpha-synuclein, the
pathologic hallmark of PD, has been seen to form in enteric
neurons early in disease19–21, and has been shown to propagate in
a prion-like manner from the gut to the brain in animal models22.
The gene that encodes alpha-synuclein is SNCA. SNCA gene
multiplication results in drastic overexpression of alpha-synuclein
and causes Mendelian autosomal dominant PD. Variants in the
SNCA region are associated with risk of idiopathic PD23, and are
expression quantitative trait loci (eQTL) associated with expression
levels of SNCA24–26. Increased alpha-synuclein expression has been
noted with infections unrelated to PD27,28. We hypothesized that if
opportunistic pathogens are involved in disease pathogenesis,
there might be an interaction between genetic variants in the
SNCA region and dysbiosis of the gut in PD.

RESULTS
Overview of analyses
The two case-control cohorts used here are those previously
employed by Wallen et al. to characterize the PD gut microbiome11.
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Here, we generated and added genotype data to investigate
interactions. The sample size for the present analysis was 199 PD
and 117 controls in dataset 1, and 312 PD and 174 controls in
dataset 2. All samples had complete genotypes, 16S microbiome
data, and metadata (Supplementary Table 1).
We defined the boundaries of the SNCA region such that it

would encompass known cis-eQTLs for SNCA. Using GTEx eQTL
database, we defined the boundaries as ch4:88.9 Mb, down-
stream of 3′ SNCA, and ch4:90.6 Mb, upstream of 5′ SNCA. In our
genome-wide genotype data (see Methods), we had 2,627 single
nucleotide polymorphisms (SNPs) that mapped to this region,
had minor allele frequency (MAF) >0.1, imputation quality score
r2 >0.8, and were in common between the two datasets being
studied here.
The taxa examined were grouped and analyzed at genus/

subgenus/clade level as Corynebacterium_1 (C. amycolatum, C.
Lactis), Porphyromonas (P. asaccharolytica, P. bennonis, P. somerae,
P. uenonis), and Prevotella (P. bivia, P. buccalis, P. disiens, P.
timonensis). For simplicity, we will refer to the three microbial
groups as taxa. As we have previously shown, the abundances of
these taxa are elevated in PD vs. control. These findings were
replicated in the two datasets (Table 1), verified by two statistical
methods, robust to covariate adjustment (over 40 variables
investigated), and yielded no evidence of being the result of PD
medications or disease duration11.
The analysis of interaction was structured as follows. First, we

screened for statistical interaction between 2,627 SNP genotypes
in the SNCA region, case-control status, and centered log-ratio

(clr) transformed abundance of each taxon and selected the SNP
with the highest statistical significance as the candidate
interacting SNP (Fig. 1a–c). We then tested the association of
each taxon with case-control status after stratifying the subjects
by the interacting SNP genotype. The effect of SNP on the PD-
taxa association was tested statistically (Table 1) and illustrated
graphically (Fig. 2, Supplementary Fig. 1). We tested the
association of interacting SNPs with PD in the present dataset
and in prior GWAS (Table 2). This test was conducted because
interaction can exist with or without a main effect of SNP on
disease risk. We then conducted in silico functional analysis of
the interacting SNPs (Table 2, Fig. 1d, e). All analyses were
performed in two datasets, followed by meta-analysis.

Corynebacterium_1. The candidate interacting SNP for Coryne-
bacterium_1 was rs356229 (interaction P= 2E−3; Fig. 1a). This SNP
is located 3′ of SNCA (Fig. 1a, d). The two alleles are rs356229_T
(allele frequency= 0.6) and rs356229_C (frequency= 0.4), and
was imputed with imputation quality score of 0.96 in dataset 1
and 0.99 in dataset 2.
If we do not consider genotype, Corynebacterium_1 abundance

is significantly elevated in PD (OR= 1.6, P= 3E−3). However,
when data are stratified by genotype, there is no association
between Corynebacterium_1 and PD among individuals with
rs356229_TT genotype, who comprised 36% of the study (OR=
1.0, P= 0.92). The association of Corynebactreium_1 with PD was
dependent on the presence of the rs356229_C allele. The
abundance of Corynebactreium_1 was nearly 2-fold higher in PD
than controls in heterozygous rs356229_CT (OR= 1.9, P= 1E−3),

Table 1. Stratified analyses suggest increased abundance of opportunistic pathogens in PD gut microbiome is dependent on the host genotype.

N PD
N Control

OR
[95%CI]

P N PD
N Control

OR
[95%CI]

P N PD
N Control

OR
[95%CI]

P N PD
N Control

OR
[95%CI]

P

(a) Corynebacterium_1 All subjects rs356229_TT rs356229_TC rs356229_CC

Dataset 1 199
117

1.5
[1.1–2.1]

0.02 64
53

1.0
[0.6–1.8]

0.90 90
48

1.7
[1.1–2.7]

0.03 45
16

2.6
[0.9–7.2]

0.08

Dataset 2 312
174

1.7
[1.0–2.9]

0.05 107
66

0.8
[0.3–2.1]

0.70 150
80

2.6
[1.2–5.4]

0.01 55
28

2.3
[0.6–8.5]

0.21

Meta-analysis 511
291

1.6
[1.2–2.1]

3E−3 171
119

1.0
[0.6–1.6]

0.92 240
128

1.9
[1.3–2.8]

1E−3 100
44

2.5
[1.1–5.6]

0.03

(b) Porphyromonas All subjects rs10029694_GG rs10029694_GC rs10029694_CC

Dataset 1 199
117

2.1
[1.4–3.2]

4E−4 154
94

1.5
[1.0–2.4]

0.06 43
22

5.2
[2.0–13.8]

1E−3 2
1

64.3
[0.6–7155.8]

0.33

Dataset 2 312
174

1.9
[1.2–3.1]

7E−3 251
142

1.6
[1.0–2.7]

0.06 57
28

3.4
[0.9–12.6]

0.07 4
4

48.1
[1.1–2125.6]

0.12

Meta-analysis 511
291

2.0
[1.5–2.8]

7E−6 405
236

1.6
[1.1–2.2]

7E−3 100
50

4.5
[2.1–9.8]

2E−4 6
5

53.9
[2.8–1032.6]

8E−3

(c) Prevotella All subjects rs6856813_TT rs6856813_TC rs6856813_CC

Dataset 1 199
117

2.1
[1.4–3.2]

9E−4 72
48

2.6
[1.4–4.7]

3E−3 91
57

1.6
[0.9–3.0]

0.12 36
12

1.8
[0.4–8.7]

0.49

Dataset 2 312
174

2.4
[1.5–3.8]

2E−4 119
69

5.6
[2.7–11.8]

1E−5 143
77

1.9
[1.0–3.7]

0.05 50
28

0.8
[0.3–2.1]

0.60

Meta-analysis 511
291

2.2
[1.6–3.0]

4E−7 191
117

3.5
[2.2–5.7]

2E−7 234
134

1.8
[1.1–2.8]

0.01 86
40

1.0
[0.4–2.3]

0.95

Testing the abundances of three taxa in PD vs. control. (a) Corynebacterium_1, (b) Porphyromonas, and (c) Prevotella (as defined by SILVA taxonomic database)
were elevated in PD gut microbiome, as reported previously11, and shown here in the first panel (all subjects). The differential abundance was then tested
within each genotype of the interacting SNP. Results are consistent across the two datasets and summarized by meta-analysis, showing differential abundance
of opportunistic pathogens in PD is genotype-dependent. PD: number of subjects with Parkinson’s disease; Cont: number of control subjects; OR [95%CI]: odds
ratio and 95% confidence interval estimating the fold-change in clr-transformed taxa abundance in PD vs. control; P: statistical significance. Clr-transformed
abundance of each taxon was tested in PD vs controls using linear regression adjusted for sex and age. Formal test of heterogeneity across datasets revealed
no heterogeneity, thus a fixed-model was used for meta-analysis.
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and 2.5-fold higher in the homozygous rs356229_CC individuals
(OR= 2.5, P= 0.03). These results can be found in Table 1a, and
data underlying these results are visualized in Fig. 2.
The Corynebacterium_1 interacting SNP has been previously

identified in PD GWAS meta-analysis, with the rs356229_C allele

associated with increased PD risk (OR= 1.3, P= 3E−42 with
N>100,000 samples23). We also detected an association between
rs356229_C and PD in the present dataset (OR= 1.3, P= 0.04
with N= 802 samples; Table 2). That we estimated an effect
size identical to GWAS, despite the enormous disparity in the

Z.D. Wallen et al.
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sample size and power, speaks to the robustness of the data. The
evidence for interaction does not stem from the association of
SNP with PD (see “Discussion”). Interestingly, the association of
rs356229_C with risk of PD varied by the increasing abundance of
Corynebacterium_1 from no association in the 1st or 2nd quartile
(OR= 0.9, P= 0.5; OR= 1.1, P= 0.8) to an emerging and then
strong association in the 3rd and 4th quartiles (OR= 1.5, P= 0.3
and OR= 2.2, P= 5E−3).
The rs356229 SNP maps to a distal regulatory element at 3′ of

SNCA (Fig. 1d, e) and is an eQTL for SNCA (Table 2). Data were
obtained by eQTL GWAS conducted in whole blood (eQTLGen.
org) and in esophagus mucosa (GTExportal.org). The rs356229_C
allele is associated with increased expression of SNCA in blood
(eQTL P= 1E−13) and in esophagus mucosa (eQTL P= 9E−5).
According to GTEx, rs356229 is also an eQTL for SNCA-AS1 (eQTL
P= 2E−7) and RP11-115D19.1 (eQTL P= 3E−14). SNCA-AS1 and
RP11-115D19.1 overlap with SNCA and encode long non-coding
RNA (lncRNA) that are antisense to SNCA (Fig. 1d) and have been
implicated in the regulation of SNCA expression29–31.

Porphyromonas. The candidate interacting SNP for Porphyromo-
nas was rs10029694 (interaction P= 6E−3; Fig. 1b). The SNP maps
to 3′ of SNCA (Fig. 1b, d). The two alleles are rs10029694_G
(frequency= 0.9) and rs10029694_C (frequency= 0.1), and was
imputed with imputation quality score 0.99 in dataset 1 and 0.92
in dataset 2.
The interacting SNPs for Porphyromonas (rs10029694) and

Corynebacterium_1 (rs356229) map very close to each other, only
480 base pairs apart, but they are not in linkage disequilibrium
(LD): D′<0.01, R2= 0.
Porphyromonas was elevated in PD irrespective of

rs10029694_G/C genotype (OR= 2.0, P= 7E−6), and in every
genotype, but the statistical interaction implied difference
across genotypes. Shown in stratified analysis (Table 1b, Fig. 2),
the rs10029694_GG genotype had a nearly two-fold higher
abundance of Porphyromonas in PD vs. controls (OR= 1.6, P=
7E−3), rs10029694_GC had nearly five-fold difference (OR=
4.5, P= 2E−4) and rs10029694_CC had approximately 54-times
higher abundance of Porphyromonas in PD than in controls
(OR= 53.9, P= 8E−3). Note however that there were only 11
individuals with rs10029694_CC genotype. Although the
statistical methods were carefully chosen to be robust to small
sample size, and the P value is quite significant despite the
sample size, the fact remains that the OR= 54 was generated
on only 11 people. If we collapse the rare rs10029694_CC
genotype with rs10029694_CG, we have 161 individuals (20%
of subjects) with at least one copy of rs10029694_C allele, and
we get a more conservative estimate of OR= 5.1 (P= 2E−5) for
association of Porphyromonas with PD in people with one or
two copies of rs10029694_C.
The Porphyromonas interacting SNP is also associated with

PD risk. The association was detected in the latest GWAS which
had 37,688 PD cases and 1.4 million controls (OR= 1.1, P= 2E
−14)3. We detected the same effect size (OR= 1.1) but it did
not reach significance (P= 0.6) (Table 2). As would be expected

from the interaction, the frequency of the effect allele
rs10029694_C in PD vs. control rose with increasing abundance
of Porphyromonas, yielding OR= 0.6 (P= 0.3) for 1st quartile
and increasing up to OR= 2.2 (P= 0.08) for the 4th quartile.
The rs10029694 SNP maps to a distal regulatory element at 3′

of SNCA, adjacent to another regulatory element where
rs356229, the interacting SNP for Corynebacterium_1 resides
(Fig. 1d, e). The rs10029694 SNP is an eQTL for two lncRNA that
are antisense to SNCA: RP11-115D19.1 (eQTL P= 1E−5) and
RP11-115D19.2 (eQTL P= 7E−6) (Table 2). RP11-115D19.1 over-
laps with 3′ of SNCA; RP11-115D19.2 is within SNCA. We did not
find direct evidence for rs10029694 being an eQTL for SNCA.
However, RP11-115D19.1 and RP11-115D19.2 are antisense to
SNCA which based on current knowledge on function of
antisense lncRNA would be presumed to be regulatory for
SNCA30,31, and RP11-115D19.1 has been directly shown to
regulate SNCA expression29.

Prevotella. The candidate interacting SNP for Prevotella was
rs6856813 (interaction P= 0.01; Fig. 1c). The SNP is ~100 kb
upstream at 5′ of SNCA (Fig. 1c, d). The two alleles are rs6856813_T
(frequency= 0.6) and rs6856813_C (frequency= 0.4), and was
imputed with imputation quality score 0.98 in dataset 1 and 0.84
in dataset 2. The Prevotella interacting SNP is 300Kb away from
and not in LD with the interacting SNPs of Corynebacterium_1
(rs356229, D′= 0.2, R2= 0.04) or Porphyromonas (rs10029694,
D′= 0.36, R2= 0.01).
Prevotella was elevated two-fold in PD vs. controls (OR= 2.2,

P= 4E−7). Genotype-specific results suggest rs6856813_TT had
the greatest differential abundance in PD vs. control (OR= 3.5,
P= 2E−7), followed by rs6856813_TC (OR= 1.8, P= 0.01), and
no difference in rs6856813_CC genotype (OR= 1.0, P= 0.95)
(Table 1c, Fig. 2).
There is no documented evidence for a direct association

between rs6856813_C/T and PD in this study (OR= 0.9, P= 0.4) or
in PD GWAS to date (Table 2). There is a statistically non-significant
trend of increasing frequency of rs6856813_T allele with increas-
ing abundance of Prevotella in PD, yielding OR= 0.8 in 1st quartile
and increasing to OR= 1.5 in 4th quartile, consistent with the
presence of interaction.
Although rs6856813 is ~100 kb upstream of SNCA and does not

map to a known regulatory sequence (Fig. 1d, e), it is a strong
eQTL for SNCA: the rs6856813_T allele, which is the effect allele for
interaction with Prevotella, is associated with increased SNCA
expression in blood (eQTL P= 3E−49) and in arteries (eQTL P= 2E
−5) (Table 2).

DISCUSSION
Numerous studies have been performed on the association of
genetic variants with PD and separately of gut microbiome and
PD, but none to our knowledge has explored the interaction
between the two. Here we have used a candidate taxa, candidate
gene strategy: we used prior knowledge of the association of PD
with elevated abundances of certain opportunistic pathogens in

Fig. 1 Genetic map of candidate interacting SNPs. SNPs in SNCA region (chromosome 4: 88.9–90.6 Mb) were tested for interaction on the
association of three taxa with PD. Results are shown in LocusZoom, where each SNP is plotted according to its base pair position and meta-
analysis −log10(P value) for interaction for the three taxa: (a) Corynebacterium_1, (b) Porphyromonas, and (c) Prevotella. The SNP with the
highest significance is shown as a purple diamond, and was chosen as candidate interacting SNP for stratified analysis (Table 1). (d) UCSC
Genome Browser shows the interacting SNPs for Corynebacterium_1 and Porphyromonas map to 3′ SNCA in a lncRNA that overlaps with and are
antisense to SNCA. The interacting SNP for Prevotella is distal at 5′ of SNCA and MMRN1. (e) The interacting SNPs for Corynebacterium_1 and
Porphyromonas, while only 450 base pair apart, are not in LD (R2= 0) and map to adjacent regulatory sequences shown in yellow bars. The
interacting SNP for Prevotella does not map to any known functional sequence. All three SNPs are eQTLs for SNCA and lncRNA genes SNCA-AS1,
RP11-115D19.1 (AC093866.1), and RP11-115D19.2 (AC097478.2) which are associated with expression of SNCA (Table 2). LD: linkage
disequilibrium; Mb: Megabase; P value: P value from meta-analysis; β: beta coefficient of interaction from meta-analysis; SE: standard error;
rsID: reference SNP ID for the marked SNP.
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Fig. 2 Differential abundance of opportunistic pathogens. Clr-transformed abundances of each taxon are plotted for PD cases (blue) and
controls (orange) for all subjects irrespective of genotype (panel a) and stratified for the three genotypes of the interacting SNP (panel b). The
bottom, middle, and top boundaries of each box represent the first, second (median), and third quartiles of the clr-transformed abundances.
Lines extending from the top and bottom of boxes show 1.5 times the interquartile range. Points extending above or below the horizontal
caps of the top and bottom lines of each box are outliers. The two datasets show the same pattern of interaction where the difference
between PD and controls in the abundances of each taxon becomes larger with increasing number of the effect allele. Dataset 2 has higher
resolution than dataset 1 (particularly for Corynebacterium_1 which is rare) because it had 10x greater sequencing depth.

Z.D. Wallen et al.

5

Published in partnership with the Parkinson’s Foundation npj Parkinson’s Disease (2021)    74 



Ta
bl
e
2.

C
h
ar
ac
te
ri
st
ic
s
o
f
th
e
in
te
ra
ct
in
g
va
ri
an

ts
at

SN
CA

lo
cu

s.

PD
-a
ss
o
ci
at
ed

ta
xa

In
te
ra
ct
in
g

SN
P
at

SN
CA

In
te
ra
ct
io
n
P

Ef
fe
ct

al
le
le

Ef
fe
ct

al
le
le

fr
eq

.
a.

A
ss
o
ci
at
io
n

w
it
h
PD

b
.A

ss
o
ci
at
io
n
w
it
h

g
en

e
ex
p
re
ss
io
n

Pr
es
en

t
st
u
d
y
O
R
(P
)

G
W
A
S
O
R
(P
)

G
en

e
eQ

TL
P

Ti
ss
u
e
st
u
d
ie
d

So
u
rc
e

Co
ry
ne
ba

ct
er
iu
m
_1

rs
35

62
29

_T
/C

2E
−
3

C
0.
4

1.
3
(0
.0
4)

1.
3
(3
E−

42
)

SN
CA

1E
−
13

W
h
o
le

b
lo
o
d

eQ
TL
G
en

SN
CA

9E
−
5

Es
o
p
h
ag

u
s
m
u
co

sa
G
TE

x

SN
CA

-A
S1

2E
−
7

Pi
tu
it
ar
y

G
TE

x

RP
11
-

11
5D

19
.1

3E
−
14

Sk
in

G
TE

x

M
M
RN

1
5E

−
5

Sp
le
en

G
TE

x

M
M
RN

1
4E

−
9

W
h
o
le

B
lo
o
d

eQ
TL
G
en

Po
rp
hy
ro
m
on

as
rs
10

02
96

94
_G

/C
6E

−
3

C
0.
1

1.
1
(0
.6
2)

1.
1
(2
E−

14
)

RP
11
-

11
5D

19
.1

1E
−
5

Sk
in

G
TE

x

RP
11
-

11
5D

19
.2

7E
−
6

Sk
in

G
TE

x

Pr
ev
ot
el
la

rs
68

56
81

3_
T/
C

0.
01

T
0.
6

0.
9
(0
.4
3)

—
SN

CA
3E

−
49

W
h
o
le

b
lo
o
d

eQ
TL
G
en

SN
CA

2E
−
5

A
rt
er
y-
Ti
b
ia
l

G
TE

x

SN
CA

1E
−
4

A
rt
er
y-
A
o
rt
a

G
TE

x

M
M
RN

1
3E

−
11

W
h
o
le

b
lo
o
d

eQ
TL
G
en

Te
st

o
f
st
at
is
ti
ca
l
in
te
ra
ct
io
n
n
o
m
in
at
ed

th
re
e
d
iff
er
en

t
an

d
in
d
ep

en
d
en

t
si
n
g
le

n
u
cl
eo

ti
d
e
va
ri
an

ts
(S
N
Ps
)
at

SN
CA

re
g
io
n
as

m
o
d
ifi
er
s
o
f
th
e
re
la
ti
ve

in
cr
ea
se

o
f
th
re
e
o
p
p
o
rt
u
n
is
ti
c
p
at
h
o
g
en

s
in

PD
g
u
t

m
ic
ro
b
io
m
e.

(a
)
Tw

o
o
f
th
e
va
ri
an

ts
w
er
e
d
et
ec
te
d
in

p
ri
o
r
G
W
A
S
as

b
ei
n
g
d
ir
ec
tl
y
as
so
ci
at
ed

w
it
h
PD

.A
ss
o
ci
at
io
n
o
f
rs
35

62
29

_T
/C

w
it
h
PD

w
as

d
et
ec
te
d
in

a
G
W
A
S
m
et
a-
an

al
ys
is
co

n
d
u
ct
ed

in
20

14
w
it
h

~
19

,0
00

PD
ca
se
s
an

d
~
10

0,
00

0
co

n
tr
o
ls
2
3
.A

ss
o
ci
at
io
n
o
f
rs
10

02
96

94
w
it
h
PD

w
as

d
et
ec
te
d
in

a
la
rg
er

G
W
A
S
m
et
a-
an

al
ys
is
co

n
d
u
ct
ed

in
20

19
w
it
h
37

,6
88

PD
ca
se
s
an

d
1.
4
m
ill
io
n
co

n
tr
o
ls
3
.(
b
)
A
ll
th
re
e
SN

Ps
ar
e
ex
p
re
ss
io
n
q
u
an

ti
ta
ti
ve

lo
ci
(e
Q
TL
)
fo
r
SN

CA
,l
n
cR

N
A
an

ti
se
n
se

to
SN

CA
kn

o
w
n
to

re
g
u
la
te

SN
CA

ex
p
re
ss
io
n
(S
N
CA

-A
S1
,R

P1
1-
11
5D

19
.1
),
ln
cR

N
A
RP

11
-1
15
D
19
.2

w
h
ic
h
is
em

b
ed

d
ed

in
an

d
an

ti
se
n
se

to
SN

CA
,

an
d
M
M
RN

1,
a
p
ro
te
in

co
d
in
g
g
en

e
(m

u
ti
m
er
in

1)
u
p
st
re
am

o
f
5′

SN
CA

w
h
ic
h
is
o
ft
en

m
u
lt
ip
lic
at
ed

al
o
n
g
w
it
h
SN

CA
m
u
lt
ip
lic
at
io
n
in

fa
m
ili
al

PD
.D

at
a
w
er
e
o
b
ta
in
ed

fr
o
m

eQ
TL

d
at
ab

as
es

G
TE

x
an

d
eQ

TL
G
en

.
Im

p
o
rt
an

t
to

n
o
te

th
at

th
e
n
am

es
o
f
g
en

er
a
ar
e
n
o
t
st
an

d
ar
d
iz
ed

ac
ro
ss

re
fe
re
n
ce

d
at
ab

as
es

an
d
ca
u
ti
o
n
sh
o
u
ld

b
e
ex
er
ci
se
d
w
h
en

co
m
p
ar
in
g
re
su
lt
s
fr
o
m

d
iff
er
en

t
st
u
d
ie
s;
th
es
e
g
en

er
a
w
er
e
d
efi

n
ed

u
si
n
g

SI
LV
A
re
fe
re
n
ce

d
at
ab

as
e.

Ef
fe
ct

al
le
le
:v

ar
ia
n
t
o
f
in
te
ra
ct
in
g
SN

P
th
at

is
as
so
ci
at
ed

w
it
h
in
cr
ea
se
d
d
iff
er
en

ti
al

ab
u
n
d
an

ce
o
f
th
e
ta
xo

n
in

PD
vs
.c
o
n
tr
o
ls
.p

d
g
en

e.
o
rg
:c
at
al
o
g
u
e
o
f
PD

-a
ss
o
ci
at
ed

g
en

es
.R

P1
1-

11
5D

19
.1

is
d
en

o
te
d
as

A
C0

93
86
6.
1
in

Fi
g
.1

,R
P1
1-
11
5D

19
.2

is
d
en

o
te
d
as

A
C0

97
47
8.
2
in

Fi
g
.1

.

Z.D. Wallen et al.

6

npj Parkinson’s Disease (2021)    74 Published in partnership with the Parkinson’s Foundation



the gut11 and searched for genetic modifiers of these associations
in the SNCA gene region23. Through statistical interaction tests we
identified specific variants in the SNCA region as candidate
interacting variants and through genotype-stratified analyses
we found evidence suggesting that the increases in the relative
abundance of opportunistic pathogens in PD gut are modulated
by host genotype.
Statistical interaction tests provide a means to investigate if the

association of one factor with the trait is influenced by a second
factor. Here, we tested if the association of three opportunistic
pathogens with PD (organisms with higher relative abundance in
PD cases than similarly aged controls) is dependent on genetic
variations in or around SNCA. Interaction studies require much
larger sample sizes and power than association studies; the
P values for interaction seldom achieve significance, and when
they do, they are far less significant than the P values for a
similarly sized one-factor association study. To that end, a major
limitation of this study was the sample size. The raw P values from
interaction tests were significant but did not pass multiple testing
correction. While the test of interaction in itself is not a powerful
statistical means to detect modifiers, it is an unbiased screen to
narrow a large region down to a few potential candidates that can
be further interrogated individually in stratified analysis. We
nominate rs356229_T/C and rs10029694_G/C as potential modi-
fiers for the association of Coynebacterium_1 and Porphyromonas
with PD based on the following evidence: (a) stratified analysis, on
two datasets, showed similar and statistically significant differ-
ences in taxa abundance by genotype, (b) the SNPs are eQTL
affecting SNCA expression, and (c) both SNPs have been shown in
GWAS to be independently associated with PD. The evidence for
interaction did not arise from and is independent of the direct
association of the SNPs with PD. This can be seen in Table 1, where
the test is between taxa and PD; SNP is not in the test, it is only
used to divide the samples by genotype, which showed varying
association between the taxon and PD as a function of genotypes
in both datasets. In fact, the present dataset had marginal
evidence for direct association of PD with rs356229_T/C (OR= 1.3,
P= 0.04), and was not significant for rs10029694_G/C (OR= 1.1,
P= 0.6). The evidence for direct associations with PD come from
the 2014 GWAS meta-analyses which detected association of
rs356229_T/C with PD at OR= 1.3, P= 3E−42 with N > 100,000
cases and controls23, and the 2019 GWAS met-analysis which
detected association of rs10029694_G/C with PD at OR= 1.1 and
P= 2E−14 with N > 1.4 million cases and controls3. Unfortunately,
collecting large datasets with microbiome and genotype data is
challenging. Currently, the largest PD datasets that have both
genotype and microbiome data are the two datasets used here,
one has 199 PD and 117 controls and the other 312 PD and 174
controls. A major challenge is to secure well-coordinated studies
with large sample sizes that can be pooled or meta-analyzed.
Unlike genetic studies which can be combined thanks to the
stability of DNA, combining microbiome studies is challenging due
to the effects of collection and storage parameters on outcomes.
Standardization of methods can alleviate some of the cross-study
variations. It is also more difficult to collect stool samples than
blood or even saliva. People are averse to donating stool samples;
30% of our research participants who donated blood refused to
donate stool. Microbiome researchers are cognizant of the need to
join resources, create standardized protocols, and coordinate data
collection across laboratories. Within a few years, we will be able
to amass the sample sizes needed to address the interaction of
genes, environment, and microbiome on a comprehensive scale.
Here, limited by sample size, we chose to explore one PD-
associated locus (SNCA) and three PD-associated opportunistic
pathogens, hoping that the resulting data will help formulate
testable hypotheses.
Our rationale for choosing SNCA and opportunistic pathogen as

our candidate gene and candidate taxa stemmed from the

collective literature. SNCA is a key player in PD. Alpha-synuclein
aggregates are a pathologic hallmark of PD. Mutations in SNCA
cause autosomal dominant PD and variants that affect SNCA gene
expression are the most significant genetic risk factors for
idiopathic PD23,32. While the functions of alpha-synuclein are yet
to be fully understood, it has been shown to play a key role in
activating the immune system, acting as antigen presented by PD-
associated major histocompatibility molecules and recognized by
T cells which infiltrate the brain33–35. SNCA expression has also
been shown to be critical for inducing immune response against
infections unrelated to PD27,28. Alpha-synuclein aggregates, which
have historically been considered as a marker of PD pathology in
the brain, can actually form in the enteric neurons19 and in animal
models have been shown to propagate from the gut to the brain22

possibly via the vagus nerve36,37. The trigger that induces alpha-
synuclein pathology in the gut is unknown. Braak hypothesized
the trigger is a pathogen17,18. Our choice of opportunistic
pathogens as the candidate taxa for interaction testing was
driven by our recent finding of an overabundance of opportunistic
pathogens in PD gut and Braak’s hypothesis. Moreover, a study
conducted in mice has corroborated that intestinal infection
triggers dopaminergic cell loss and motor impairment in a Pink1
knockout model of PD38. Whether the opportunistic pathogens
found in human PD microbiome are triggers of PD is being
investigated. In the meantime, we thought that if these
opportunistic pathogens are involved in PD pathogenesis, there
is likely a connection to SNCA genotype worth exploring.
Interestingly, three different SNCA-linked genetic variants

emerged as potential modifiers for the association of the three
opportunistic pathogens with PD. They are independent of each
other with no LD among them. All three interacting variants are
eQTLs for SNCA and lncRNAs that affect the expression of SNCA.
lncRNA are emerging as important regulators of gene expres-
sion39. Aberrant expression of lncRNA has been widely reported in
PD, often in relation to the expression and aggregation of
SNCA40,41. More specific to the present findings, the lncRNA’s near
SNCA, including SNCA-AS1 identified here, were shown to be
under-expressed while SNCA mRNA was over-expressed in
substantia nigra of autopsied PD brains compared to controls30.
Another lncRNA identified here, RP11-115D19.1, was shown to
repress SNCA expression in SH-SY5Y human neuroblastoma cell
lines29. This suggests a link between SNCA expression and the
presence of opportunistic pathogens, and that regulation of this
link may involve different regulatory elements depending on the
pathogen. lncRNA is expressed in a cell-specific manner42. It is not
known which cells in the gut are responsible for the expression
and corruption of alpha-synuclein into pathologic species. If the
opportunistic pathogens induce SNCA expression or corruption,
they may do so by signaling different cell types, hence the
involvement of different regulatory elements. Prevotella and
Porphyromonas are commensal to gastrointestinal and urinary
track, Corynebacterium is common in skin microbiome. All three
can be found at low abundance in the gut. All three have been
implicated in causing infections in nearly every type of tissue
(reviewed by Wallen et al.11).
These data provide new leads and hypotheses that with follow-

up in experimental models may yield a better understanding of
disease pathogenesis. These data alone cannot resolve cause and
effect. We cannot tell if the SNCA genotype leads to altered
colonization of the gut, which in turn leads to PD, or is it the other
way around, SNCA genotype causes PD, which leads to gut
dysfunction and accumulation of pathogens. Or, maybe the
pathogen induces alpha-synuclein expression which elicits
immune response to infection as seen in other infections
unrelated to PD, but in individuals with certain regulatory
genotypes at SNCA, the alpha-synuclein expression goes into
overdrive and PD is a downstream consequence. An alternative
hypothesis for the interaction of SNCA eQTL and an opportunistic
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pathogen is that eQTL controls alpha-synuclein concentration in
the cell, bacteria triggers misfolding and aggregation of alpha-
synuclein, and since misfolding and aggregation is directly
dependent on the concentration of alpha-synuclein in the cell43,
individuals with certain SNCA eQTL genotypes are at higher risk of
developing PD pathology from gut-derived insults. One can
further speculate that these bacteria might promote alpha-
synuclein misfolding and aggregation by invading the host cells
(all three can invade host cells) or via producing toxic or
proinflammatory substances. Prevotella and Porphyromonas pro-
duce lipopolysaccharides, gut-derived proinflammatory endotox-
ins that when administered to mice, cause intestinal permeability
and progressive increase in alpha-synuclein expression in the gut,
and neuroinflammation and nigral neurodegeneration in the
brain44,45. Further studies in humans conducted over time and in
experimental models will be needed to tease out the underlying
biology of these interactions.
In conclusion, this study was exploratory and hypothesis

generating. Within this cautionary framework, this study suggests
that genetic susceptibility to disease and the dysbiosis in the gut
microbiome are not operating independently. Rather, it suggests
that alterations in gut microbiome should be integrated in the
gene–environment interaction paradigm, which has long been
suspected to be the cause of idiopathic disease but is yet to
produce a causative combination. The results also put forth the
hypothesis that the PD-associated genetic variants may confer
susceptibility via interaction with microbiome; opening a new area
to search for the incomplete penetrance of PD susceptibility genes.
In addition, while it is yet to be seen if the opportunistic pathogens
are part of the cause or consequence of disease (experiments are
underway), the finding that their abundance correlated with PD-
associated genotypes adds credence to the hypotheses that their
presence signifies a role in disease pathogenesis, possibly as
the triggers that Braak originally proposed. With the identity of the
candidate microorganisms in hand, these hypotheses can be
tested in model systems. Thus, the significance of this work lies not
on achieving conclusive discoveries, rather on generating novel
hypotheses with tangible leads that can be put to test
experimentally.

METHODS
Subjects
The study was approved by the institutional review boards at all
participating institutions, namely New York State Department of Health,
University of Alabama at Birmingham, VA Puget Sound Health Care
System, Emory University, and Albany Medical Center. All subjects
provided written informed consent for their participation. This study
included two datasets each composed of persons with PD (case) and
neurologically healthy individuals (control). Subject enrollment and data
collection for both datasets were conducted by the NeuroGenetics
Research Consortium (NGRC) team using uniform protocols. The two
datasets used here were the same datasets used by Wallen et al for
characterizing the microbiome11; except here we have generated and
added genetic data, and subjects without genotype were excluded
(Supplementary Table 1). Methods of subject selection and data collection
have been described in detail before11. Briefly, PD was diagnosed by
NGRC-affiliated movement disorder specialists46. Controls were self-
reported free of neurological disease. Metadata were collected on over
40 variables including age, sex, race, geography, diet, medication, health,
gastrointestinal issues, weight fluctuation, and body mass index. We
enrolled 212 persons with PD and 136 controls in 2014 (dataset 1)47, and
323 PD and 184 controls during 2015–2017 (dataset 2)11. Subsequently, we
excluded 11 PD and 4 control samples for failing 16S sequencing, 2 PD for
unreliable metadata, and 15 controls for lacking genotypes from dataset 1;
and 11 PD and 10 controls were excluded from dataset 2 for lacking
genotype data. The sample size used in current analyses was 199 PD and
117 controls in dataset 1, and 312 PD and 174 controls in dataset 2
(Supplementary Table 1).

Microbiome data
Methods for collection, processing, and analysis of microbiome data have
been reported in detail11, and raw sequences are publicly available at NCBI
SRA BioProject ID PRJNA601994. Each subject provided a single stool
sample at a single time point, and each sample was measured once. Briefly,
for both datasets uniformly, DNA/RNA-free sterile cotton swabs were used
to collect stool, DNA was extracted using MoBio extraction kits, and 16S
rRNA gene hypervariable region 4 was sequenced using the same primers,
but in two laboratories, resulting in 10x greater sequencing depth in
dataset 2 than dataset 1. Sequences were demultiplexed using QIIME2
(core distribution 2018.6)48 for dataset 1 and BCL2FASTQ (Illumina, San
Diego, CA) for dataset 2. Bioinformatics processing of sequences was
performed separately for each dataset, but using an identical pipeline (see
Wallen et al.11 for step-by-step protocol). Unique amplicon sequence
variants (ASVs) were identified using DADA2 v 1.849 and given taxonomic
assignment using DADA2 and SILVA (v 132) reference database. Analyses
were performed at genus/subgenus/clade level (here, referred to as taxa).
Taxa that were associated with PD were then investigated at species level.
This was important because not all species of Corynebacterium_1,
Porphyromonas, and Prevotella are opportunistic pathogens. Species that
made up each taxon were identified by SILVA when an ASV matched a
species at 100% homology. To augment SILVA, we blasted ASVs that made
up Corynebacterium_1, Porphyromonas, and Prevotella against the NCBI 16S
rRNA database for matches that were >99–100% identical with high
statistical confidence.

Defining SNCA region
Since the expression of SNCA has been implicated in PD and the most
significant genetic markers of PD map outside SNCA and are eQTL for
SNCA, we set out to explore the entire region that includes known cis-
eQTLs for SNCA. We used GTEx (V8 release) database and searched for
eQTLs for SNCA (https://gtexportal.org/home/gene/SNCA). The search
returned 1,749 entries which included 601 unique eQTLs. They span from
ch4:90.6 Mb at 5′ upstream SNCA to ch4:88.9 Mb at 3′ downstream SNCA
(GRCh38/hg38). We had genotypes for 2,627 SNPs in this region (excluding
SNPs with MAF < 0.1 and imputation quality score <0.8), and among them,
we had captured 413 of the 601 eQTLs for SNCA. Interaction test was
conducted for all 2,627 SNPs and the SNP with the highest interaction
P value was chosen for genotype-stratified analysis.

Genotype data
Genotype data for the SNCA region were extracted from GWAS data. Since
only some of the GWAS data have been published and most were
generated recently and unpublished, we will provide the methods in
detail. Dataset 1 is composed of a subset of the NGRC subjects who were
genotyped in 2009 using Illumina HumanOmni1-Quad array (GWAS
published in 2010)35 and were subsequently enrolled for microbiome
study, and additional NGRC samples that were collected for microbiome
studies in 2014 who were genotyped in 2018 using Illumina Infinium Multi-
Ethnic array (unpublished data). Dataset 2 was enrolled into NGRC in
2015–2017 and genotyped in 2020 using Infinium Global Diversity Array
(unpublished data). Genotyping and quality control (QC) of SNP genotypes
are described below. Unless otherwise specified, QC was performed using
PLINK 1.9 (v1.90b6.16)50.
Approximately 70% of subjects in dataset 1 (N= 244) were genotyped in

2009 using the HumanOmni1-Quad_v1-0_B BeadChip for a GWAS of PD35,
resulting in genotypes for 1,012,895 SNPs. Subjects were also genotyped
using the Illumina Immunochip resulting in genotypes for 202,798 SNPs.
QC of genotype data had been previously performed using PLINK v1.0735,
therefore, this process was redone for current study using an updated
version of PLINK v1.9. The mean non-Y chromosome call rate for samples
in both arrays was 99.9%. Calculation of identity-by-descent in PLINK using
HumanOmni genotypes revealed no cryptic relatedness between samples
(PI_HAT >0.15). A subset of SNP mappings were in NCBI36/hg18 build, and
were converted to GRCh37/hg19 using the liftOver executable and
hg18ToHg19.over.chain.gz chain file from UCSC genome browser (down-
loaded from https://hgdownload.soe.ucsc.edu/downloads.html). SNP filter-
ing for both HumanOmni and Immunochip genotypes included removal of
SNPs with call rate <99%, Hardy-Weinberg equilibrium (HWE) P value < 1E
−6, MAF <0.01, and MAF difference between sexes >0.15. HumanOmni
and Immunochip data were then merged, and SNPs with significant
differences in PD patient and control missing rates (P < 1E−5) and
duplicate SNPs were removed. To remove duplicate SNPs, we first checked
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the genotype concordance between duplicated SNPs. If duplicate SNPs
were concordant, we took the SNP with the lowest missing rate, or the first
listed SNP if missing rates were the same. If duplicate SNPs were
discordant, we removed both SNPs as we do not know which SNP is
correct. After QC, the remaining number of genotyped SNPs was 910,083
with a mean call rate of 99.8%.
Approximately 30% of subjects in dataset 1 (N= 89) were enrolled after

the 2010 PD GWAS. These samples were genotyped in 2018 using the
Infinium Multi-Ethnic EUR/EAS/SAS-8 array. Raw genotyping intensity files
were uploaded to GenomeStudio v 2.0.4 where genotype cluster
definitions and calls were determined for each SNP using intensity data
from all samples. The GenCall (genotype quality score) threshold for calling
SNP genotypes was set at 0.15, and SNPs that resulted in a genotype
cluster separation <0.2 were zeroed out for their genotype. Genotypes for
1,649,668 SNPs were then exported from GenomeStudio using the PLINK
plugin v 2.1.4, and converted to PLINK binary files for further QC. The mean
non-Y chromosome call rate for samples was 99.8%. Calculation of identity-
by-descent revealed no cryptic relatedness among samples (PI_HAT <0.15).
A subset of SNP mappings were in GRCh38/hg38 build, and were
converted to GRCh37/hg19 using the liftOver executable and hg38ToHg19.
over.chain.gz chain file. The same SNP filtering criteria were implemented
here as described above for the first group in dataset 1: call rate <99%,
HWE P value < 1E−6, MAF <0.01, MAF difference between sexes >0.15,
significant differences in PD patient and control missing rates (P < 1E−5),
and removal of duplicate SNPs. After QC, the remaining number of
genotyped SNPs was 749,362 with a mean call rate of 100%.
All subjects in dataset 2 (N= 486) were genotyped at once in 2020 using

the Infinium Global Diversity Array. Genotype clusters were defined using
GenomeStudio v 2011.1 and 99% of the genotyped samples. Genotypes
were not called for SNPs with GenCall score <0.15, and failure criteria for
autosomal and X chromosome SNPs included the following: call rate <85%,
MAF ≤ 1% and call rate <95%, heterozygote rate ≥80%, cluster separation
<0.2, any positive control replicate errors, absolute difference in call rate
between genders >10% (autosomal only), absolute difference in hetero-
zygote rate between genders >30% (autosomal only), and male hetero-
zygote rate greater than 1% (X only). All Y chromosome, XY pseudo-
autosomal region (PAR), and mitochondrial SNPs were manually reviewed.
Genotypes for 1,827,062 SNPs were released in the form of PLINK binary
files. The mean non-Y chromosome call rate for samples was 99.2%.
Calculation of identity-by-descent showed two subjects were genetically
related as a parent and offspring (PI_HAT= 0.5), which we were already
aware of. The same SNP filtering criteria was implemented here as it was
for dataset 1: call rate <99%, HWE P value < 1E−6, MAF <0.01, MAF
difference between sexes >0.15, significant differences in PD patient and
control missing rates (P < 1E−5), and removal of duplicate SNPs. After QC,
the remaining number of SNPs for dataset 2 was 783,263 with a mean call
rate of 99.9%.

Principal component analysis (PCA)
We performed PCA for each genotyping array using 1000 Genomes Phase
3 reference genotypes. Study genotypes were first merged with 1000
Genomes Phase 3 genotypes (previously filtered for non-triallelic SNPs and
SNPs with MAF >5%) using GenotypeHarmonizer v 1.4.2351 and PLINK.
Merged genotypes were then LD-pruned as previously described35,
resulting in a mean LD-pruned subset of ~148,000 SNPs. Principal
components were calculated using pruned SNPs and the top two PCs
were plotted using ggplot2 (Supplementary Fig. 1).

Imputation
To increase SNP density, we imputed genotypes using Minimac452 on
Trans-Omics for Precision Medicine (TOPMed) Imputation Server
(https://imputation.biodatacatalyst.nhlbi.nih.gov)53. To be compatible with
TOPMed, we converted SNP coordinates to GRCh38/hg38 using the
liftOver executable and hg19ToHg38.over.chain.gz chain file. SNP map-
pings were then checked and corrected for use with TOPMed reference
panels using the utility scripts HRC-1000G-check-bim.pl (v4.3.0) and
CreateTOPMed.pl (downloaded from https://www.well.ox.ac.uk/~wrayner/
tools/), and a TOPMed reference file ALL.TOPMed_freeze5_hg38_dbSNP.
vcf.gz (downloaded from https://bravo.sph.umich.edu/freeze5/hg38/
download). Running of these utility scripts resulted in a series of PLINK
commands to correct genotypes files for concordance with TOPMed by
excluding SNPs that did not have a match in TOPMed, mitochondrial SNPs,
palindromic SNPs with frequency >0.4, SNPs with non-matching alleles to

TOPMed, indels, and duplicates. Once running of PLINK commands was
complete, genotype files were converted to variant call format (VCF) and
submitted to the TOPMed Imputation Server using the following
parameters: reference panel TOPMed version r2 2020, array build
GRCh38/hg38, r2 filter threshold 0.3 (although we excluded from down-
stream analyses SNPs with r2 <0.8), Eagle v2.4 for phasing, skip QC
frequency check, and run in QC & imputation mode. VCF files with
genotypes and imputed dosage data were then outputted by the
imputation server and used in statistical analyses. Directly genotyped
and imputed genotypes from HumanOmni1-Quad_v1-0_B BeadChip and
Infinium Multi-Ethnic EUR/EAS/SAS-8 Kit arrays were merged to create
dataset 1. To merge genotypes, one duplicate subject was first removed
from the Infinium Multi-Ethnic array VCF files. Then, per chromosome VCF
files were merged by first indexing the files using tabix, then merging the
files using bcftools’ merge function (tabix and bcftools v 1.10.2). The
genome-wide data included 20,263,129 SNPs (1,282,026 genotyped and
18,981,103 imputed) for dataset 1 and 21,389,007 SNPs (719,329
genotyped and 20,669,678 imputed) for dataset 2.
For the present study, the SNCA region was defined as ch4:88.9Mb-

90.6 Mb (as described above). SNPs within SNCA region with MAF<0.1 were
excluded as there would be too few homozygotes for stratified analysis.
Imputed SNPs with imputation quality score r2 <0.8 were also excluded.
Analysis included 2,627 SNPs that were directly genotyped or imputed in
both datasets.

Statistical analysis overview
For all analyses, raw taxa abundances were transformed using the centered
log-ratio (clr) transformation before including in tests. The clr transforma-
tion was performed using Eq. (1) in R:

clr Xtaxað Þ ¼ log Xtaxað Þ �mean log X1;X2 ¼ Xnð Þð Þ½ � (1)

where Xtaxa is the raw abundance of either Corynebacterium_1, Porphyr-
omonas, or Prevotella in a single sample with a pseudocount of 1 added,
and X1,X2…Xn are the raw abundances of every taxon detected in the same
sample with a pseudocount of 1 added.
Throughout, tests were conducted in two datasets separately, and

results were meta-analyzed using fixed- and random-effect models, and
tested for heterogeneity. If heterogeneity was detected across two
datasets (Cochran’s Q P < 0.1), random-effect meta-analysis results were
reported. If no heterogeneity was detected (Cochran’s Q P ≥ 0.1), fixed-
effect results were reported. P values were all two-tailed.

Screening for interaction
We tested interaction to identify candidate SNPs that may modify the
association of Corynebacterium_1, Porphyromonas, or Prevotella with PD.
For each dataset separately, linear regression was performed using PLINK 2
(v2.3 alpha) --glm function to test the interaction between case/control
status and SNP on the abundance of each taxon. Equation (2) shows the
model that was specified for the analyses:

Taxon � SNP x case=controlð Þ þ SNPþ case=controlþ sexþ age½ � (2)

where taxon is the clr-transformed abundance of Corynebacterium_1,
Porphyromonas, or Prevotella, and SNP is genotype defined as dosages of
the minor allele ranging from 0 to 2 in the additive model. The interaction
test was adjusted for sex, age, and main effects of case/control status and
SNP. Interaction β and standard errors generated for each taxon were then
used as input for meta-analysis in METASOFT v2.0.154. Summary statistics
are in Supplementary Tables 2–4. For each taxon, the SNP that reached the
highest statistical significance in meta-analysis was tagged as candidate
interacting SNP.

Linkage disequilibrium
To visualize the results across the SNCA region, results from meta-analyses
were uploaded to LocusZoom55. LD between SNPs was calculated in
LocusZoom based on the “EUR” LD population. The resulting plots show
the location of the SNPs tested in the region and their LD with candidate
interacting SNP (Fig. 1a–c).
To determine if the three candidate interacting SNPs were correlated,

possibly tagging the same variant, or independent, pairwise LD estimates
were calculated using the LDpair tool with 1000 Genome phase 3
European data from LDlink v4.156.
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Association of taxa with PD as a function of genotype
Subjects were grouped by their genotype at the interacting SNP. We used
the best guessed genotype for the imputed SNPs and directly genotyped
SNPs. Association of each taxon with PD (case/control status) was tested
within each genotype, while adjusting for age and sex, using linear
regression via the R function glm from the stats v 3.5.0 package. Odds
ratios (OR) and corresponding P values were calculated using linear
regression. Each dataset was analyzed separately. Meta-analysis was
performed using the metagen function of the meta R package v4.9.7,
specifying the summary measure to be “OR”. Results are shown in Table 1.
Boxplots were created using ggplot2 v 3.1.0 (Fig. 2). Of the two variants of
each SNP, the one that was associated with enhanced differential
abundance in PD vs. controls was tagged as the effect allele.

Association of interacting SNP with PD
To test whether the interacting SNP had a main effect on PD risk, we used
Firth’s penalized logistic regression (logistf R package v 1.23) testing SNP
genotype (dosages of the effect allele ranging from 0 to 2) in an additive
model against case-control status adjusting for age and sex. OR, SE and
P values were calculated. Results were meta-analyzed using a fixed-effects
model as implemented in the metagen function, of the meta R package
v4.9.7, specifying the summary measure to be “OR”.

Functional analysis in silico
While we had defined the SNCA region such that it encompassed known
eQTLs, only 413 of 2,676 SNPs tested were eQTL. Thus, if left to chance, the
odds that a candidate SNP would be an eQTL was ~15%. We used UCSC
Genome Browser (hg38 build) to map the candidate SNPs and visually
inspect if they were in a regulatory sequence. To determine, for each SNP,
if they were found in genome-wide studies to be significantly associated
with gene expression, we used two eQTL databases, GTEx (https://
gtexportal.org) and eQTLGen (https://www.eqtlgen.org).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All data that are necessary to generate, verify and extend the research in the article
are publicly available. Individual-level raw 16S sequences and basic metadata are
publicly available at NCBI Sequence Read Archive (SRA) BioProject ID PRJNA601994.
Summary statistics of interaction of 2,627 SNPs in SNCA region with PD on clr-
transformed abundances of taxa are provided in Supplementary Table 2 for
Coryenbacterium_1, Supplementary Table 3 for Porphyromonas, and Supplementary
Table 4 for Prevotella. Individual-level SNP (2,627 SNPs) and phenotype data (sex, age,
case/control) that were used in this paper (the SNCA region) are provided in
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